skip to main content


Title: Improved SnO 2 Electron Transport Layers Solution‐Deposited at Near Room Temperature for Rigid or Flexible Perovskite Solar Cells with High Efficiencies
Abstract

Electron transport layer (ETL) is a functional layer of great significance for boosting the power conversion efficiency (PCE) of perovskite solar cells (PSCs). To date, it is still a challenge to simultaneously reduce the surface defects and improve the crystallinity in ETLs during their low‐temperature processing. Here, a novel strategy for the mediation of in situ regrowth of SnO2nanocrystal ETLs is reported: introduction of controlled trace amounts of surface absorbed water on the fluorinated tin oxide (FTO) or indium–tin oxide (ITO) surfaces of the substrates using ultraviolet ozone (UVO) pretreatment. The optimum amount of adsorbed water plays a key role in balancing the hydrolysis–condensation reactions during the structural evolution of SnO2thin films. This new approach results in a full‐coverage SnO2ETL with a desirable morphology and crystallinity for superior optical and electrical properties, as compared to the control SnO2ETL without the UVO pretreatment. Finally, the rigid and flexible PSC devices based on the new SnO2ETLs yield high PCEs of up to 20.5% and 17.5%, respectively.

 
more » « less
NSF-PAR ID:
10460691
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Energy Materials
Volume:
9
Issue:
26
ISSN:
1614-6832
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Flexible perovskite solar cells (f‐PSCs) have attracted great attention due to their promising commercial prospects. However, the performance off‐PSCs is generally worse than that of their rigid counterparts. Herein, it is found that the unsatisfactory performance of planar heterojunction (PHJ)f‐PSCs can be attributed to the undesirable morphology of electron transport layer (ETL), which results from the rough surface of the flexible substrate. Precise control over the thickness and morphology of ETL tin dioxide (SnO2) not only reduces the reflectance of the indium tin oxide (ITO) on polyethylene 2,6‐naphthalate (PEN) substrate and enhances photon collection, but also decreases the trap‐state densities of perovskite films and the charge transfer resistance, leading to a great enhancement of device performance. Consequently, thef‐PSCs, with a structure of PEN/ITO/SnO2/perovskite/Spiro‐OMeTAD/Ag, exhibit a power conversion efficiency (PCE) up to 19.51% and a steady output of 19.01%. Furthermore, thef‐PSCs show a robust bending resistance and maintain about 95% of initial PCE after 6000 bending cycles at a bending radius of 8 mm, and they present an outstanding long‐term stability and retain about 90% of the initial performance after >1000 h storage in air (10% relative humidity) without encapsulation.

     
    more » « less
  2.  
    more » « less
  3. Abstract

    Photoelectrodes without a p–n junction are often limited in efficiency by charge recombination at semiconductor surfaces and slow charge transfer to electrocatalysts. This study reports that tin oxide (SnOx) layers applied to n‐Si wafers after forming a thin chemically oxidized SiOxlayer can passivate the Si surface while producing ≈620 mV photovoltage under 100 mW cm−2of simulated sunlight. The SnOxlayer makes ohmic contacts to Ni, Ir, or Pt films that act as precatalysts for the oxygen‐evolution reaction (OER) in 1.0mKOH(aq) or 1.0mH2SO4(aq). Ideal regenerative solar‐to‐O2(g) efficiencies of 4.1% and 3.7%, respectively, are obtained in 1.0mKOH(aq) with Ni or in 1.0mH2SO4(aq) with Pt/IrOxlayers as OER catalysts. Stable photocurrents for >100 h are obtained for electrodes with patterned catalyst layers in both 1.0mKOH(aq) and 1.0mH2SO4(aq).

     
    more » « less
  4. Abstract

    Materials combining an asymmetric pore structure with mesopores everywhere enable high surface area accessibility and fast transport, making them attractive for e.g., energy conversion and storage applications. Block copolymer (BCP)/inorganic precursor co‐assembly combined with non‐solvent induced phase separation (NIPS) provides a route to materials in which a mesoporous top surface layer merges into an asymmetric support with graded porosity along the film normal and mesopores throughout. Here, the co‐assembly and non‐solvent‐induced phase separation (CNIPS) of poly(isoprene)‐b‐poly(styrene)‐b‐poly(4‐vinylpyridine) (ISV) triblock terpolymer and titanium dioxide (TiO2) sol‐gel nanoparticlesare reported. Heat‐treatment in air results in free‐standing asymmetric porous TiO2. Further thermal processing in ammonia results in free‐standing asymmetric porous titanium nitride (TiN). processing changes alter structural membrane characteristics is demonstrated. Changing the CNIPS evaporation time results in various membrane cross‐sections ( finger‐like to sponge‐like). Oxide and nitride material composition, crystallinity, and porosity are tuned by varying thermal processing conditions. Finally, thermal processing condition effects are probed on phase‐pure asymmetric nitride membrane behavior using cyclic voltammetry to elucidate their influence, e.g., on specific capacitance. Results provide further insights into improving asymmetric and porous materials for applications including energy conversion and storage, separation, and catalysis and motivate a further expansion of CNIPS to other (in)organic materials.

     
    more » « less
  5. Abstract

    Metal‐halide perovskites show promise as highly efficient solar cells, light‐emitting diodes, and other optoelectronic devices. Ensuring long‐term stability is now a major priority. In this study, an ultrathin (2 nm) layer of polyethylenimine ethoxylated (PEIE) is used to functionalize the surface of C60for the subsequent deposition of atomic layer deposition (ALD) SnO2, a commonly used electron contact bilayer for p–i–n devices. The enhanced nucleation results in a more continuous initial ALD SnO2layer that exhibits superior barrier properties, protecting Cs0.25FA0.75Pb(Br0.20I0.80)3films upon direct exposure to high temperatures (200 °C) and water. This surface modification with PEIE translates to more stable solar cells under aggressive testing conditions in air at 60 °C under illumination. This type of “built‐in” barrier layer mitigates degradation pathways not addressed by external encapsulation, such as internal halide or metal diffusion, while maintaining high device efficiency up to 18.5%. This nucleation strategy is also extended to ALD VOxfilms, demonstrating its potential to be broadly applied to other metal oxide contacts and device architectures.

     
    more » « less