skip to main content


Title: Kinetics of thermal dewaxing of injection‐molded silicon carbide
Abstract

Powder injection molding is a near‐net shape, high‐speed fabrication process that has been studied only lightly with silicon carbide (SiC) as the powder. The addition of nanoparticles to the monomodal powder to form a bimodal powder increases the solid fraction in the feedstock but may also adversely affect other properties. In this paper, the kinetic properties of thermally dewaxed SiC mono‐ and bimodal feedstocks by three models were compared to solvent‐dewaxed SiC and thermally dewaxed powder metal from other studies. The activation energyEaof pyrolytic dewaxing was graphically estimated by the master dewaxing curve model as ~80 kJ/mol for monomodal and ~60 kJ/mol for bimodal SiC powder size distributions, a little higher than the ~50 kJ/mol by solvent dewaxing of the same compositions. TheEain the Flynn‐Wall model was 64 kJ/mol for monomodal and 53 kJ/mol for bimodal. TheEawas 49 kJ/mol for monomodal and 42 kJ/mol for bimodal SiC powder by the Kissinger thermal analysis model. The lowerEaof the bimodal feedstock was attributed to its increased nucleation sites. These results provide the basis for dewaxing models—part of the rate‐limiting step in powder injection molding—for SiC powder‐binder systems.

 
more » « less
NSF-PAR ID:
10460692
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Ceramic Engineering & Science
Volume:
1
Issue:
2
ISSN:
2578-3270
Page Range / eLocation ID:
p. 85-91
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Radiocarbon ages and thermal stability measurements can be used to estimate the stability of soil organic carbon (OC). Soil OC is a complex reservoir that contains a range of compounds with different sources, reactivities, and residence times. This heterogeneity can shift bulk radiocarbon values and impact assessment of OC stability and turnover in soils. Four soil horizons (Oa, Bhs, Bs, Bg) were sampled from highly weathered 350 ka Pololu basaltic volcanics on the Island of Hawaii and analyzed by Ramped PyrOX (RPO) in both the pyrolysis (PY) and oxidation (OX) modes to separate a complex mixture of OC into thermally defined fractions. Fractions were characterized for carbon stable isotope and radiocarbon composition. PY and OX modes yielded similar results. Bulk radiocarbon measurements were modern in the Oa horizon (Fm = 1.013) and got progressively older with depth: the Bg horizon had an Fm value of 0.73. Activation energy distributions (p(E)) calculated using the ‘rampedpyrox’ model yielded consistent mean E values of 140 kJ mol-1 below the Oa horizon. The ‘rampedpyrox’ model outputs showed a mostly bimodal distribution in the p(E) below the Oa, with a primary peak at 135 kJ mol-1 and a secondary peak at 148 kJ mol-1, while the Oa was dominated by a single, higher E peak at 157 kJ mol-1. We suggest that mineral-carbon interaction, either through mineral surface-OC or metal-OC interactions, is the stabilization mechanism contributing to the observed mean E of 140 kJ mol-1 below the Oa horizon. In the Oa horizon, within individual RPO analyses, radiocarbon ages in the individual thermal fractions were indistinguishable (p[0.1). The flat age distributions indicate there is no relationship between age and thermal stability (E) in the upper horizon ([25 cm). Deeper in the soil profile higher lEf values were associated with older radiocarbon ages, with slopes progressively steepening with depth. In the deepest (Bg) horizon, there was the largest, yet modest change in Fm of 0.06 (626 radiocarbon years), indicating that older OC is slightly more thermally stable. 
    more » « less
  2. Abstract

    Producing hydrochar from landfill municipal solid wastes (MSW) is a sustainable alternative to existing waste management practices in low‐ and middle‐income countries. In this study, mixed MSW feedstock (sent for landfilling) was subjected to hydrothermal carbonization to produce hydrochars. The hydrochar showing the highest heating value was subjected to pyrolysis at 5, 10, and 20 K min−1heating rates. Based on the pyrolysis characteristics, a three pseudo‐component‐based distributed activation energy model was employed to describe the pyrolysis kinetics. The activation energy distributions for the three pseudo‐components were 140 ± 8.7 kJ mol−1, 190 ± 1 kJ mol−1and 175.9 ± 24.9 kJ mol−1, which were able to predict the pyrolysis profile at all heating rates withR2 > 0.999. Differential thermogravimetric profiles of the hydrochar revealed its pyrolytic reactivity to resemble lignocellulosic constituents. Fourier‐transform infrared analysis of the hydrochar showed retention of oxygen‐containing functional groups (associated with lignocellulosic constituents) from the parent feedstock. © 2022 Society of Chemical Industry and John Wiley & Sons, Ltd.

     
    more » « less
  3. Abstract

    The effects of annealing time and molecular weight on the strong melt memory effect observed in random ethylene 1‐alkene copolymers are analyzed in a series of model ethylene 1‐butene copolymers with 2.2 mol% branches. Melt memory is associated with molten clusters of ethylene sequences from the initial crystals that remain in close proximity and are unable to diffuse quickly to the randomized melt state, thus increasing the recrystallization rate. Melt memory persists even for greater than 1000 min annealing indicating a long‐lived nature of the clusters that only fully dissolve at melt temperatures above a critical value (>160 °C). Below the critical melt temperature, molecular weight and annealing temperature have a strong influence on the slow kinetics of melt memory. For the copolymers analyzed, slow dissolution of clusters is experimentally observed only forMw < 50 000 g mol−1. More stable clusters that survive higher annealing temperatures display slower dissolution rates than clusters remaining at lower temperatures. The threshold crystallinity level to enable melt memory (Xc,threshold) decreases with increasing molecular weight and decreasing annealing temperature similarly to the variation of the chain diffusivity in the melt. The process leading to melt memory is thermally activated as the variation ofXc,thresholdwith temperature follows Arrhenius behavior with high activation energy (ca108 kJ mol−1) that is independent of molecular weight. © 2018 Society of Chemical Industry

     
    more » « less
  4. Abstract

    This study presents new experimental data on the thermodynamic stability of SiC(O) and SCN(O) ceramics derived from the pyrolysis of polymeric precursors: SMP‐10 (polycarbosilane), PSZ‐20 (polysilazane), and Durazane‐1800 (polysilazane) at 1200°C. There are close similarities in the structure of the polysilazanes, but they differ in crosslinking temperature. High‐resolution X‐ray photoelectron spectroscopy shows notable differences in the microstructure of all polymer‐derived ceramics (PDCs). The enthalpies of formation (∆H°f, elem) of SiC(O) (from SMP‐10), SCN(O) (from PSZ‐20), and SCN(O) (from Durazane‐1800) are −20 ± 4.63, −78.55 ± 2.32, and −85.09 ± 2.18 kJ/mol, respectively. The PDC derived from Durazane‐1800 displays greatest thermodynamic stability. The results point to increased thermodynamic stabilization with addition of nitrogen to the microstructure of PDCs. Thermodynamic analysis suggests increased thermodynamic drive for forming SiCN(O) microstructures with an increase in the relative amount of SiNxC4−xmixed bonds and a decrease in silica. Overall, enthalpies of formation suggest superior stabilizing effect of SiNxC4−xcompared to SiOxC4−xmixed bonds. The results indicate systematic stabilization of SiCN(O) structures with decrease in silicon and oxygen content. The destabilization of PDCs resulting from higher silicon content may reach a plateau at higher concentrations.

     
    more » « less
  5. Abstract

    Three crystalline SiC fibers were studied: Tyranno, Hi‐Nicalon, and Sylramic. Thermodynamic stability of the SiC fibers was determined by high temperature oxide melt solution calorimetry. Results shed light on the thermodynamic penalty or benefit associated with microstructural modification of the ceramic fibers, and how energetics correlate to mechanical properties. Enthalpies of formation from components (SiC, SiO2, Si3N4, and C, ∆H°f,comp) for Tyranno, Hi‐Nicalon, and Sylramic are −12.05 ± 8.71, −58.75 ± 6.93, and −71.10 ± 8.71 kJ/mol Si, respectively. The microstructure in Sylramic offers the greatest stabilizing effect, thus resulting in its much more exothermic enthalpy of formation relative to elements and crystalline components. In contrast, the microstructure in Tyranno offers the least stabilization. The thermodynamic stability of the fibers increases with increasing mixed bonding (Si bonded to both C and O). From mechanical testing, Young's moduli of Tyranno, Hi‐Nicalon, and Sylramic are 112, 205, and 215 GPa, respectively. Greater thermodynamic stability is correlated with a higher Young's modulus.

     
    more » « less