skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.

Title: Long-lived Bell states in an array of optical clock qubits
The generation of long-lived entanglement on an optical clock transition is a key requirement to unlocking the promise of quantum metrology. Arrays of neutral atoms constitute a capable quantum platform for accessing such physics, where Rydberg-based interactions may generate entanglement between individually controlled and resolved atoms. To this end, we leverage the programmable state preparation afforded by optical tweezers along with the efficient strong confinement of a 3d optical lattice to prepare an ensemble of strontium atom pairs in their motional ground state. We engineer global single-qubit gates on the optical clock transition and two-qubit entangling gates via adiabatic Rydberg dressing, enabling the generation of Bell states, |ψ⟩=12√(|gg⟩+i|ee⟩), with a fidelity of F=92.8(2.0)%. For use in quantum metrology, it is furthermore critical that the resulting entanglement be long lived; we find that the coherence of the Bell state has a lifetime of τbc=4.2(6) s via parity correlations and simultaneous comparisons between entangled and unentangled ensembles. Such Bell states can be useful for enhancing metrological stability and bandwidth. Further rearrangement of hundreds of atoms into arbitrary configurations using optical tweezers will enable implementation of many-qubit gates and cluster state generation, as well as explorations of the transverse field Ising model and Hubbard models with entangled or finite-range-interacting tunnellers.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The ability to engineer parallel, programmable operations between desired qubits within a quantum processor is key for building scalable quantum information systems 1,2 . In most state-of-the-art approaches, qubits interact locally, constrained by the connectivity associated with their fixed spatial layout. Here we demonstrate a quantum processor with dynamic, non-local connectivity, in which entangled qubits are coherently transported in a highly parallel manner across two spatial dimensions, between layers of single- and two-qubit operations. Our approach makes use of neutral atom arrays trapped and transported by optical tweezers; hyperfine states are used for robust quantum information storage, and excitation into Rydberg states is used for entanglement generation 3–5 . We use this architecture to realize programmable generation of entangled graph states, such as cluster states and a seven-qubit Steane code state 6,7 . Furthermore, we shuttle entangled ancilla arrays to realize a surface code state with thirteen data and six ancillary qubits 8 and a toric code state on a torus with sixteen data and eight ancillary qubits 9 . Finally, we use this architecture to realize a hybrid analogue–digital evolution 2 and use it for measuring entanglement entropy in quantum simulations 10–12 , experimentally observing non-monotonic entanglement dynamics associated with quantum many-body scars 13,14 . Realizing a long-standing goal, these results provide a route towards scalable quantum processing and enable applications ranging from simulation to metrology. 
    more » « less
  2. Abstract

    Minimizing and understanding errors is critical for quantum science, both in noisy intermediate scale quantum (NISQ) devices1and for the quest towards fault-tolerant quantum computation2,3. Rydberg arrays have emerged as a prominent platform in this context4with impressive system sizes5,6and proposals suggesting how error-correction thresholds could be significantly improved by detecting leakage errors with single-atom resolution7,8, a form of erasure error conversion9–12. However, two-qubit entanglement fidelities in Rydberg atom arrays13,14have lagged behind competitors15,16and this type of erasure conversion is yet to be realized for matter-based qubits in general. Here we demonstrate both erasure conversion and high-fidelity Bell state generation using a Rydberg quantum simulator5,6,17,18. When excising data with erasure errors observed via fast imaging of alkaline-earth atoms19–22, we achieve a Bell state fidelity of$$\ge 0.997{1}_{-13}^{+10}$$0.997113+10, which improves to$$\ge 0.998{5}_{-12}^{+7}$$0.998512+7when correcting for remaining state-preparation errors. We further apply erasure conversion in a quantum simulation experiment for quasi-adiabatic preparation of long-range order across a quantum phase transition, and reveal the otherwise hidden impact of these errors on the simulation outcome. Our work demonstrates the capability for Rydberg-based entanglement to reach fidelities in the 0.999 regime, with higher fidelities a question of technical improvements, and shows how erasure conversion can be utilized in NISQ devices. These techniques could be translated directly to quantum-error-correction codes with the addition of long-lived qubits7,22–24.

    more » « less
  3. The realization of an efficient quantum optical interface for multi-qubit systems is an outstanding challenge in science and engineering. Using two atoms in individually controlled optical tweezers coupled to a nanofabricated photonic crystal cavity, we demonstrate entanglement generation, fast nondestructive readout, and full quantum control of atomic qubits. The entangled state is verified in free space after being transported away from the cavity by encoding the qubits into long-lived states and using dynamical decoupling. Our approach bridges quantum operations at an optical link and in free space with a coherent one-way transport, potentially enabling an integrated optical interface for atomic quantum processors. 
    more » « less
  4. Abstract

    Atomic systems, ranging from trapped ions to ultracold and Rydberg atoms, offer unprecedented control over both internal and external degrees of freedom at the single‐particle level. They are considered among the foremost candidates for realizing quantum simulation and computation platforms that can outperform classical computers at specific tasks. In this work, a realistic experimental toolbox for quantum information processing with neutral alkaline‐earth‐like atoms in optical tweezer arrays is described. In particular, a comprehensive and scalable architecture based on a programmable array of alkaline‐earth‐like atoms is proposed, exploiting their electronic clock states as a precise and robust auxiliary degree of freedom, and thus allowing for efficient all‐optical one‐ and two‐qubit operations between nuclear spin qubits. The proposed platform promises excellent performance thanks to high‐fidelity register initialization, rapid spin‐exchange gates, and error detection in read‐out. As a benchmark and application example, the expected fidelity of an increasing number of subsequent SWAP gates for optimal parameters is computed, which can be used to distribute entanglement between remote atoms within the array.

    more » « less
  5. Abstract

    Current optical atomic clocks do not utilize their resources optimally. In particular, an exponential gain in sensitivity could be achieved if multiple atomic ensembles were to be controlled or read out individually, even without entanglement. However, controlling optical transitions locally remains an outstanding challenge for neutral-atom-based clocks and quantum computing platforms. Here we show arbitrary, single-site addressing for an optical transition via sub-wavelength controlled moves of atoms trapped in tweezers. The scheme is highly robust as it relies only on the relative position changes of tweezers and requires no additional addressing beams. Using this technique, we implement single-shot, dual-quadrature readout of Ramsey interferometry using two atomic ensembles simultaneously, and show an enhancement of the usable interrogation time at a given phase-slip error probability. Finally, we program a sequence that performs local dynamical decoupling during Ramsey evolution to evolve three ensembles with variable phase sensitivities, a key ingredient of optimal clock interrogation. Our results demonstrate the potential of fully programmable quantum optical clocks even without entanglement and could be combined with metrologically useful entangled states in the future.

    more » « less