skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Immediate‐early gene Homer1a intranuclear transcription focus intensity as a measure of relative neural activation
Abstract Immediate‐early genes (IEGs) exhibit a rapid, transient transcription response to neuronal activation. Fluorescently labeled mRNA transcripts appear as bright intranuclear transcription foci (INF), which have been used as an all‐or‐nothing indicator of recent neuronal activity; however, it would be useful to know whether INF fluorescence can be used effectively to assess relative activations within a neural population. We quantified theHomer1a(H1a) response of hippocampal neurons to systematically varied numbers of exposures to the same places by inducing male Long‐Evans rats to run laps around a track. Previous studies reveal relatively stable firing rates across laps on a familiar track. A strong linear trend (r2 > 0.9) in INF intensity was observed between 1 and 25 laps, after which INF intensity declined as a consequence of dispersion related to the greater elapsed time. When the integrated fluorescence of the entire nucleus was considered instead, the linear relationship extended to 50 laps. However, there was only an approximate doubling ofH1adetected for this 50‐fold variation in total spiking. Thus, the intranuclearH1aRNA fluorescent signal does provide a relative measure of how many times a set of neurons was activated over a ~10 min period, but the dynamic range and hence signal‐to‐noise ratios are poor. This low dynamic range may reflect previously reported reductions in the IEG response during repeated episodes of behavior over longer time scales. It remains to be determined how well theH1asignal reflects relative firing rates within a population of neurons in response to a single, discrete behavioral event.  more » « less
Award ID(s):
1631465
PAR ID:
10460860
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Hippocampus
Volume:
29
Issue:
6
ISSN:
1050-9631
Page Range / eLocation ID:
p. 481-490
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Lateralization of neuronal functions plays a critical role in regulating behavioral flexibility, but the underlying molecular mechanisms are challenging to establish at a single-neuron level. We previously showed that attraction ofC. elegansto a medium-chain alcohol switches to avoidance in a uniform background of a second attractive odorant. This context-dependent behavioral plasticity is mediated by symmetric inversion of the odor-evoked response sign in the bilateral AWC olfactory neurons. Here we show that this symmetric response plasticity is driven by asymmetric molecular mechanisms in the AWC neuron pair. Mutations in thegcy-12receptor guanylyl cyclase abolish odor response plasticity only in AWCOFF; the opposing odor-evoked response signs in AWCOFFand AWCONingcy-12mutants results in these animals being behaviorally indifferent to this chemical. We find thatgcy-12is expressed, and required, in both AWC neurons to regulate odor response plasticity only in AWCOFF. We further show that disruption of AWC fate lateralization results in loss of asymmetry in the response plasticity ingcy-12mutants. Our results indicate that symmetric neuronal response plasticity can arise from asymmetry in underlying molecular mechanisms, and suggest that lateralization of signaling pathways in defined conditions may enhance neuronal and behavioral flexibility. 
    more » « less
  2. Central pattern generators are circuits generating rhythmic movements, such as walking. The majority of existing computational models of these circuits produce antagonistic output where all neurons within a population spike with a broad burst at about the same neuronal phase with respect to network output. However, experimental recordings reveal that many neurons within these circuits fire sparsely, sometimes as rarely as once within a cycle. Here we address the sparse neuronal firing and develop a model to replicate the behavior of individual neurons within rhythm-generating populations to increase biological plausibility and facilitate new insights into the underlying mechanisms of rhythm generation. The developed network architecture is able to produce sparse firing of individual neurons, creating a novel implementation for exploring the contribution of network architecture on rhythmic output. Furthermore, the introduction of sparse firing of individual neurons within the rhythm-generating circuits is one of the factors that allows for a broad neuronal phase representation of firing at the population level. This moves the model toward recent experimental findings of evenly distributed neuronal firing across phases among individual spinal neurons. The network is tested by methodically iterating select parameters to gain an understanding of how connectivity and the interplay of excitation and inhibition influence the output. This knowledge can be applied in future studies to implement a biologically plausible rhythm-generating circuit for testing biological hypotheses. 
    more » « less
  3. Miniaturized fluorescence microscopes (miniscopes) enable imaging of calcium events from a large population of neurons in freely behaving animals. Traditionally, miniscopes have only been able to record from a single fluorescence wavelength. Here, we present an open-source dual-channel miniscope that simultaneously records two wavelengths in freely behaving animals. To enable simultaneous acquisition of two fluorescent wavelengths, we incorporated two CMOS sensors into a single miniscope. To validate our dual-channel miniscope, we imaged hippocampal CA1 region that co-expressed a dynamic calcium indicator (GCaMP) and a static nuclear signal (dTomato) while mice ran on a linear track. Our results suggest that, even when neurons were registered across days using dTomato signals, hippocampal spatial coding changes over time. In conclusion, our dual-channel miniscope enables imaging of two fluorescence wavelengths with minimal cross-talk between the two channels, opening the doors to a multitude of previously inaccessible experimental possibilities. 
    more » « less
  4. Abstract Dynamic community detection provides a coherent description of network clusters over time, allowing one to track the growth and death of communities as the network evolves. However, modularity maximization, a popular method for performing multilayer community detection, requires the specification of an appropriate null network as well as resolution and interlayer coupling parameters. Importantly, the ability of the algorithm to accurately detect community evolution is dependent on the choice of these parameters. In functional temporal networks, where evolving communities reflect changing functional relationships between network nodes, it is especially important that the detected communities reflect any state changes of the system. Here, we present analytical work suggesting that a uniform null network provides improved sensitivity to the detection of small evolving communities in temporal networks with positive edge weights bounded above by 1, such as certain types of correlation networks. We then propose a method for increasing the sensitivity of modularity maximization to state changes in nodal dynamics by modelling self-identity links between layers based on the self-similarity of the network nodes between layers. This method is more appropriate for functional temporal networks from both a modelling and mathematical perspective, as it incorporates the dynamic nature of network nodes. We motivate our method based on applications in neuroscience where network nodes represent neurons and functional edges represent similarity of firing patterns in time. We show that in simulated data sets of neuronal spike trains, updating interlayer links based on the firing properties of the neurons provides superior community detection of evolving network structure when groups of neurons change their firing properties over time. Finally, we apply our method to experimental calcium imaging data that monitors the spiking activity of hundreds of neurons to track the evolution of neuronal communities during a state change from the awake to anaesthetized state. 
    more » « less
  5. Abstract MicroRNAs regulate gene expression by destabilizing target mRNA and/or inhibiting translation in animal cells. The ability to mechanistically dissect miR‐124′s function during specification, differentiation, and maturation of neurons during development within a single system has not been accomplished. Using the sea urchin embryo, we take advantage of the manipulability of the embryo and its well‐documented gene regulatory networks (GRNs). We incorporatedNeuroD1as part of the sea urchin neuronal GRN and determined that miR‐124 inhibition resulted in aberrant gut contractions, swimming velocity, and neuronal development. Inhibition of miR‐124 resulted in an increased number of cells expressing transcription factors (TFs) associated with progenitor neurons and a concurrent decrease of mature and functional neurons. Results revealed that in the early blastula/gastrula stages, miR‐124 regulates undefined factors during neuronal specification and differentiation. In the late gastrula/larval stages, miR‐124 regulatesNotchandNeuroD1during the transition between neuronal differentiation and maturation. Overall, we have improved the neuronal GRN and identified miR‐124 to play a prolific role in regulating various transitions of neuronal development. 
    more » « less