skip to main content

Title: In‐situ determination of the HfO 2 –Ta 2 O 5 ‐temperature phase diagram up to 3000°C

The previously unknown experimental HfO2–Ta2O5‐temperature phase diagram has been elucidated up to 3000°C using a quadrupole lamp furnace and conical nozzle levitator system equipped with a CO2laser, in conjunction with synchrotron X‐ray diffraction. These in‐situ techniques allowed the determination of the following: (a) liquidus, solidus, and invariant transformation temperatures as a function of composition from thermal arrest experiments, (b) determination of equilibrium phases through testing of reversibility via in‐situ X‐ray diffraction, and (c) molar volume measurements as a function of temperature for equilibrium phases. From these, an experimental HfO2–Ta2O5‐temperature phase diagram has been constructed which is consistent with the Gibbs Phase Rule.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Date Published:
Journal Name:
Journal of the American Ceramic Society
Page Range / eLocation ID:
p. 4848-4861
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The electrical properties of the entropy stabilized oxides: Zr6Nb2O17, Zr6Ta2O17, Hf6Nb2O17and Hf6Ta2O17were characterized. The results and the electrical properties of the products (i.e. ZrO2, HfO2, Nb2O5and Ta2O5) led us to hypothesize the A6B2O17family is a series of mixed ionic-electronic conductors. Conductivity measurements in varying oxygen partial pressure were performed on A6Nb2O17and A6Ta2O17.The results indicate that electrons are involved in conduction in A6Nb2O17while holes play a role in conduction of A6Ta2O17. Between 900 °C–950 °C, the charge transport in the A6B2O17system increases in Ar atmosphere. A combination of DTA/DSC and in situ high temperature X-ray diffraction was performed to identify a potential mechanism for this increase. In-situ high temperature X-ray diffraction in Ar does not show any phase transformation. Based on this, it is hypothesized that a change in the oxygen sub-lattice is the cause for the shift in high temperature conduction above 900 °C–950 °C. This could be:(i)Nb(Ta)4+- oxygen vacancy associate formation/dissociation,(ii)formation of oxygen/oxygen vacancy complexes(iii)ordering/disordering of oxygen vacancies and/or(iv)oxygen-based superstructure commensurate or incommensurate transitions. In-situ high temperature neutron diffraction up to 1050 °C is required to help elucidate the origins of this large increase in conductivity.

    more » « less
  2. Abstract

    A liquid‐phase polymer‐to‐ceramic approach is reported for the synthesis of hafnium carbide (HfC)/hafnium oxide (HfO2) composite particles from a commercial precursor. Typically, HfC ceramics have been obtained by sintering of fine powders, which usually results in large particle size and high porosity during densification. In this study a single‐source liquid precursor was first cured at low temperature and then pyrolyzed at varying conditions to achieve HfC ceramics. The chemical structure of the liquid and cured precursors, and the resulting HfC ceramics was studied using various analytical techniques. The nuclear magnetic resonance and Fourier transform infrared spectroscopy indicated the presence of partially hydrated hafnium oxychloride (Hf–O–Cl·nH2O) in the precursor. Scanning electron microscopy of the resulting HfC crystals showed a size distribution in the range of approx. 600–700 nm. The X‐ray diffraction of the pyrolyzed samples confirmed the formation of crystalline HfC along with monoclinic‐HfO2and free carbon phase. The formation of HfO2in the ceramics was significantly reduced by controlling the low‐temperature curing temperature. Pyrolysis at various temperatures showed that HfC formation occurred even at 1000°C. These results show that the reported precursor could be promising for the direct synthesis of ultrahigh temperature HfC ceramics and for precursor infiltration pyrolysis of reinforced ceramic matrix composites.

    more » « less
    more » « less
  4. Abstract

    The ferroelectricity in fluorite oxides has gained increasing interest due to its promising properties for multiple applications in semiconductor as well as energy devices. The structural origin of the unexpected ferroelectricity is now believed to be the formation of a non‐centrosymmetric orthorhombic phase with the space group ofPca21. However, the factors driving the formation of the ferroelectric phase are still under debate. In this study, to understand the effect of annealing temperature, the crystallization process of doped HfO2thin films is analyzed using in situ, high‐temperature X‐ray diffraction. The change in phase fractions in a multiphase system accompanied with the unit cell volume increase during annealing could be directly observed from X‐ray diffraction analyses, and the observations give an information toward understanding the effect of annealing temperature on the structure and electrical properties. A strong coupling between the structure and the electrical properties is reconfirmed from this result.

    more » « less
  5. Abstract

    The solid‐state synthesis of perovskite BiFeO3has been a topic of interest for decades. Many studies have reported challenges in the synthesis of BiFeO3from starting oxides of Bi2O3and Fe2O3, mainly associated with the development of persistent secondary phases such as Bi25FeO39(sillenite) and Bi2Fe4O9(mullite). These secondary phases are thought to be a consequence of unreacted Fe‐rich and Bi‐rich regions, that is, incomplete interdiffusion. In the present work, in situ high‐temperature X‐ray diffraction is used to demonstrate that Bi2O3first reacts with Fe2O3to form sillenite Bi25FeO39, which then reacts with the remaining Fe2O3to form BiFeO3. Therefore, the synthesis of perovskite BiFeO3is shown to occur via a two‐step reaction sequence with Bi25FeO39as an intermediate compound. Because Bi25FeO39and the γ‐Bi2O3phase are isostructural, it is difficult to discriminate them solely from X‐ray diffraction. Evidence is presented for the existence of the intermediate sillenite Bi25FeO39using quenching experiments, comparisons between Bi2O3behavior by itself and in the presence of Fe2O3, and crystal structure examination. With this new information, a proposed reaction pathway from the starting oxides to the product is presented.

    more » « less