The drag coefficient Cd for a rigid and uniformly distributed rod canopy covering a sloping channel following the instantaneous collapse of a dam was examined using flume experiments. The measurements included space x and time t high resolution images of the water surface h(x, t) for multiple channel bed slopes So and water depths behind the dam Ho along with drag estimates provided by sequential load cells. Using these data, an analysis of the Saint-Venant equation (SVE) for the front speed was conducted using the diffusive wave approximation. An inferred Cd=0.4 from the h(x, t) data near the advancing front region, also confirmed by load cell measurements, is much reduced relative to its independently measured steady-uniform flow case. This finding suggests that drag reduction mechanisms associated with transients and flow disturbances are more likely to play a dominant role when compared to conventional sheltering or blocking effects on Cd examined in uniform flow. The increased air volume entrained into the advancing wave front region as determined from an inflow–outflow volume balance partly explains the Cd reduction from unity.
more »
« less
Resistance to Flow on a Sloping Channel Covered by Dense Vegetation following a Dam Break
Abstract The effect of hydraulic resistance on the downstream evolution of the water surface profilehin a sloping channel covered by a uniform dense rod canopy following the instantaneous collapse of a dam was examined using flume experiments. Near the head of the advancing wavefront, wherehmeets the rods, the conventional picture of a turbulent boundary layer was contrasted to a distributed drag force representation. The details of the boundary layer around the rod and any interferences between rods were lumped into a drag coefficientCd. The study demonstrated the following: In the absence of a canopy, the Ritter solution agreed well with the measurements. When the canopy was represented by an equivalent wall friction as common when employing Manning's formula with constant roughness, it was possible to match the measured wavefront speed but not the precise shape of the water surface profile. However, upon adopting a distributed drag force with a constantCd, the agreement between measured and modeledhwas quite satisfactory at all positions and times. The measurements and model calculations suggested that the shape ofhnear the wavefront was quasilinear with longitudinal distance for a constantCd. The computed constantCd(≈0.4) was surprisingly much smaller than theCd(≈1) reported in uniform flow experiments with staggered cylinders for the same element Reynolds number. This finding suggested that drag reduction mechanisms associated with unsteadiness, nonuniformity, transient waves, and other flow disturbances were more likely to play a role when compared to conventional sheltering effects.
more »
« less
- PAR ID:
- 10460938
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Water Resources Research
- Volume:
- 55
- Issue:
- 2
- ISSN:
- 0043-1397
- Page Range / eLocation ID:
- p. 1040-1058
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We report direct measurement of drag forces due to tidal flow over a submerged seagrass bed in Ngeseksau Reef, Koror State, Republic of Palau. In our study, drag is computed using an array of high‐resolution pressure measurements, from which values of the drag coefficients,CD, referenced to measured depth‐averaged velocities,V, were inferred. Reflecting the fact that seagrass blades deflect in the presence of flow, we find thatCDis O(1) when flows are weak and tends toward a value of 0.03 at the highest velocities, behavior that is consistent with existing theory for canopy flows with flexible canopy elements. A limited subset of velocity profiles obey the law of the wall, producing values of shear velocity that, while noisy, broadly agree with values inferred from the pressure measurements.more » « less
-
The cell morphology of rod-shaped bacteria is determined by the rigid net of peptidoglycan forming the cell wall. Alterations to the rod shape, such as the curved rod, occur through manipulating the process of cell wall synthesis. The human pathogenVibrio choleraetypically exists as a curved rod, but straight rods have been observed under certain conditions. While this appears to be a regulated process, the regulatory pathways controlling cell shape transitions inV. choleraeand the benefits of switching between rod and curved shape have not been determined. We demonstrate that cell shape inV. choleraeis regulated by the bacterial second messenger cyclic dimeric guanosine monophosphate (c-di-GMP) by posttranscriptionally repressing expression ofcrvA, a gene encoding an intermediate filament-like protein necessary for curvature formation inV. cholerae.This regulation is mediated by the transcriptional cascade that also induces production of biofilm matrix components, indicating that cell shape is coregulated withV. cholerae’s induction of sessility. During microcolony formation, wild-typeV. choleraecells tended to exist as straight rods, while genetically engineering cells to maintain high curvature reduced microcolony formation and biofilm density. Conversely, straightV. choleraemutants have reduced swimming speed when using flagellar motility in liquid. Our results demonstrate regulation of cell shape in bacteria is a mechanism to increase fitness in planktonic and biofilm lifestyles.more » « less
-
Abstract PurposeTo assess biomechanics of a lumbar PSO stabilized with different multi-rod constructs (4-, 5-, 6-rods) using satellite and accessory rods. MethodsA validated spinopelvic finite element model with a L3 PSO was used to evaluate the following constructs: 2 primary rods T10-pelvis (“Control”), two satellite rods (4-rod), two satellite rods + one accessory rod (5-rod), or two satellite rods + two accessory rods (6-rod). Data recorded included: ROM T10-S1 and L2-L4, von Mises stresses on primary, satellite, and accessory rods, factor of safety yield stress, and force across the PSO surfaces. Percent differences relative to Control were calculated. ResultsCompared to Control, 4-rods increased PSO flexion and extension. Lower PSO ROMs were observed for 5- and 6-rods compared to 4-rods. However, 4-rod (348.6 N) and 5-rod (343.2 N) showed higher PSO forces than 2-rods (336 N) and 6-rods had lower PSO forces (324.2 N). 5- and 6-rods led to the lowest rod von Mises stresses across the PSO. 6-rod had the maximum factor of safety on the primary rods. ConclusionsIn this finite element analysis, 4-rods reduced stresses on primary rods across a lumbar PSO. Although increased rigidity afforded by 5- and 6-rods decreased rod stresses, it resulted in less load transfer to the anterior vertebral column (particularly for 6-rod), which may not be favorable for the healing of the anterior column. A balance between the construct’s rigidity and anterior load sharing is essential.more » « less
-
Abstract NUDC (nucleardistribution proteinC) is a mitotic protein involved in nuclear migration and cytokinesis across species. Considered a cytoplasmic dynein (henceforth dynein) cofactor, NUDC was shown to associate with the dynein motor complex during neuronal migration. NUDC is also expressed in postmitotic vertebrate rod photoreceptors where its function is unknown. Here, we examined the role of NUDC in postmitotic rod photoreceptors by studying the consequences of a conditional NUDC knockout in mouse rods (rNudC−/−). Loss of NUDC in rods led to complete photoreceptor cell death at 6 weeks of age. By 3 weeks of age, rNudC−/−function was diminished, and rhodopsin and mitochondria were mislocalized, consistent with dynein inhibition. Levels of outer segment proteins were reduced, but LIS1 (lissencephaly protein 1), a well‐characterized dynein cofactor, was unaffected. Transmission electron microscopy revealed ultrastructural defects within the rods of rNudC−/−by 3 weeks of age. We investigated whether NUDC interacts with the actin modulator cofilin 1 (CFL1) and found that in rods, CFL1 is localized in close proximity to NUDC. In addition to its potential role in dynein trafficking within rods, loss of NUDC also resulted in increased levels of phosphorylated CFL1 (pCFL1), which would purportedly prevent depolymerization of actin. The absence of NUDC also induced an inflammatory response in Müller glia and microglia across the neural retina by 3 weeks of age. Taken together, our data illustrate the critical role of NUDC in actin cytoskeletal maintenance and dynein‐mediated protein trafficking in a postmitotic rod photoreceptor.more » « less
An official website of the United States government
