skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Title: Bayesian Proper Orthogonal Decomposition for Learnable Reduced-Order Models with Uncertainty Quantification
Designing and/or controlling complex systems in science and engineering relies on appropriate mathematical modeling of systems dynamics. Classical differential equation based solutions in applied and computational mathematics are often computationally demanding. Recently, the connection between reduced-order models of high-dimensional differential equation systems and surrogate machine learning models has been explored. However, the focus of both existing reduced-order and machine learning models for complex systems has been how to best approximate the high fidelity model of choice. Due to high complexity and often limited training data to derive reduced-order or machine learning surrogate models, it is critical for derived reduced-order models to have reliable uncertainty quantification at the same time. In this paper, we propose such a novel framework of Bayesian reduced-order models naturally equipped with uncertainty quantification as it learns the distributions of the parameters of the reduced-order models instead of their point estimates. In particular, we develop learnable Bayesian proper orthogonal decomposition (BayPOD) that learns the distributions of both the POD projection bases and the mapping from the system input parameters to the projected scores/coefficients so that the learned BayPOD can help predict high-dimensional systems dynamics/fields as quantities of interest in different setups with reliable uncertainty estimates. The developed learnable BayPOD inherits the capability of embedding physics constraints when learning the POD-based surrogate reduced-order models, a desirable feature when studying complex systems in science and engineering applications where the available training data are limited. Furthermore, the proposed BayPOD method is an end-to-end solution, which unlike other surrogate-based methods, does not require separate POD and machine learning steps. The results from a real-world case study of the pressure field around an airfoil.  more » « less
Award ID(s):
2119103
NSF-PAR ID:
10460985
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE Transactions on Artificial Intelligence
ISSN:
2691-4581
Page Range / eLocation ID:
1 to 13
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. : In order to evaluate urban earthquake resilience, reliable structural modeling is needed. However, detailed modeling of a large number of structures and carrying out time history analyses for sets of ground motions are not practical at an urban scale. Reduced-order surrogate models can expedite numerical simulations while maintaining necessary engineering accuracy. Neural networks have been shown to be a powerful tool for developing surrogate models, which often outperform classical surrogate models in terms of scalability of complex models. Training a reliable deep learning model, however, requires an immense amount of data that contain a rich input-output relationship, which typically cannot be satisfied in practical applications. In this paper, we propose model-informed symbolic neural networks (MiSNN) that can discover the underlying closed-form formulations (differential equations) for a reduced-order surrogate model. The MiSNN will be trained on datasets obtained from dynamic analyses of detailed reinforced concrete special moment frames designed for San Francisco, California, subject to a series of selected ground motions. Training the MiSNN is equivalent to finding the solution to a sparse optimization problem, which is solved by the Adam optimizer. The earthquake ground acceleration and story displacement, velocity, and acceleration time histories will be used to train 1) an integrated SNN, which takes displacement and velocity states and outputs the absolute acceleration response of the structure; and 2) a distributed SNN, which distills the underlying equation of motion for each story. The results show that the MiSNN can reduce computational cost while maintaining high prediction accuracy of building responses. 
    more » « less
  2. In many mechanistic medical, biological, physical, and engineered spatiotemporal dynamic models the numerical solution of partial differential equations (PDEs), especially for diffusion, fluid flow and mechanical relaxation, can make simulations impractically slow. Biological models of tissues and organs often require the simultaneous calculation of the spatial variation of concentration of dozens of diffusing chemical species. One clinical example where rapid calculation of a diffusing field is of use is the estimation of oxygen gradients in the retina, based on imaging of the retinal vasculature, to guide surgical interventions in diabetic retinopathy. Furthermore, the ability to predict blood perfusion and oxygenation may one day guide clinical interventions in diverse settings, i.e., from stent placement in treating heart disease to BOLD fMRI interpretation in evaluating cognitive function (Xie et al., 2019 ; Lee et al., 2020 ). Since the quasi-steady-state solutions required for fast-diffusing chemical species like oxygen are particularly computationally costly, we consider the use of a neural network to provide an approximate solution to the steady-state diffusion equation. Machine learning surrogates, neural networks trained to provide approximate solutions to such complicated numerical problems, can often provide speed-ups of several orders of magnitude compared to direct calculation. Surrogates of PDEs could enable use of larger and more detailed models than are possible with direct calculation and can make including such simulations in real-time or near-real time workflows practical. Creating a surrogate requires running the direct calculation tens of thousands of times to generate training data and then training the neural network, both of which are computationally expensive. Often the practical applications of such models require thousands to millions of replica simulations, for example for parameter identification and uncertainty quantification, each of which gains speed from surrogate use and rapidly recovers the up-front costs of surrogate generation. We use a Convolutional Neural Network to approximate the stationary solution to the diffusion equation in the case of two equal-diameter, circular, constant-value sources located at random positions in a two-dimensional square domain with absorbing boundary conditions. Such a configuration caricatures the chemical concentration field of a fast-diffusing species like oxygen in a tissue with two parallel blood vessels in a cross section perpendicular to the two blood vessels. To improve convergence during training, we apply a training approach that uses roll-back to reject stochastic changes to the network that increase the loss function. The trained neural network approximation is about 1000 times faster than the direct calculation for individual replicas. Because different applications will have different criteria for acceptable approximation accuracy, we discuss a variety of loss functions and accuracy estimators that can help select the best network for a particular application. We briefly discuss some of the issues we encountered with overfitting, mismapping of the field values and the geometrical conditions that lead to large absolute and relative errors in the approximate solution. 
    more » « less
  3. Abstract

    The development of a reliable and robust surrogate model is often constrained by the dimensionality of the problem. For a system with high‐dimensional inputs/outputs (I/O), conventional approaches usually use a low‐dimensional manifold to describe the high‐dimensional system, where the I/O data are first reduced to more manageable dimensions and then the condensed representation is used for surrogate modeling. In this study, a new solution scheme for this type of problem based on a deep learning approach is presented. The proposed surrogate is based on a particular network architecture, that is, convolutional neural networks. The surrogate architecture is designed in a hierarchical style containing three different levels of model structures, advancing the efficiency and effectiveness of the model in the aspect of training. To assess the model performance, uncertainty quantification is carried out in a continuum mechanics benchmark problem. Numerical results suggest the proposed model is capable of directly inferring a wide variety of I/O mapping relationships. Uncertainty analysis results obtained via the proposed surrogate have successfully characterized the statistical properties of the output fields compared to the Monte Carlo estimates.

     
    more » « less
  4. Abstract

    Modern performance earthquake engineering practices frequently require a large number of time‐consuming non‐linear time‐history simulations to appropriately address excitation and structural uncertainties when estimating engineering demand parameter (EDP) distributions. Surrogate modeling techniques have emerged as an attractive tool for alleviating such high computational burden in similar engineering problems. A key challenge for the application of surrogate models in earthquake engineering context relates to the aleatoric variability associated with the seismic hazard. This variability is typically expressed as high‐dimensional or non‐parametric uncertainty, and so cannot be easily incorporated within standard surrogate modeling frameworks. Rather, a surrogate modeling approach that can directly approximate the full distribution of the response output is warranted for this application. This approach needs to additionally address the fact that the response variability may change as input parameter changes, yielding a heteroscedastic behavior. Stochastic emulation techniques have emerged as a viable solution to accurately capture aleatoric uncertainties in similar contexts, and recent work by the second author has established a framework to accommodate this for earthquake engineering applications, using Gaussian Process (GP) regression to predict the EDP response distribution. The established formulation requires for a portion of the training samples the replication of simulations for different descriptions of the aleatoric uncertainty. In particular, the replicated samples are used to build a secondary GP model to predict the heteroscedastic characteristics, and these predictions are then used to formulate the primary GP that produces the full EDP distribution. This practice, however, has two downsides: it always requires minimum replications when training the secondary GP, and the information from the non‐replicated samples is utilized only for the primary GP. This research adopts an alternative stochastic GP formulation that can address both limitations. To this end, the secondary GP is trained by measuring the square of sample deviations from the mean instead of the crude sample variances. To establish the primitive mean estimates, another auxiliary GP is introduced. This way, information from all replicated and non‐replicated samples is fully leveraged for estimating both the EDP distribution and the underlying heteroscedastic behavior, while formulation accommodates an implementation using no replications. The case study examples using three different stochastic ground motion models demonstrate that the proposed approach can address both aforementioned challenges.

     
    more » « less
  5. Abstract

    A hybrid data assimilation algorithm is developed for complex dynamical systems with partial observations. The method starts with applying a spectral decomposition to the entire spatiotemporal fields, followed by creating a machine learning model that builds a nonlinear map between the coefficients of observed and unobserved state variables for each spectral mode. A cheap low‐order nonlinear stochastic parameterized extended Kalman filter (SPEKF) model is employed as the forecast model in the ensemble Kalman filter to deal with each mode associated with the observed variables. The resulting ensemble members are then fed into the machine learning model to create an ensemble of the corresponding unobserved variables. In addition to the ensemble spread, the training residual in the machine learning‐induced nonlinear map is further incorporated into the state estimation, advancing the diagnostic quantification of the posterior uncertainty. The hybrid data assimilation algorithm is applied to a precipitating quasi‐geostrophic (PQG) model, which includes the effects of water vapor, clouds, and rainfall beyond the classical two‐level QG model. The complicated nonlinearities in the PQG equations prevent traditional methods from building simple and accurate reduced‐order forecast models. In contrast, the SPEKF forecast model is skillful in recovering the intermittent observed states, and the machine learning model effectively estimates the chaotic unobserved signals. Utilizing the calibrated SPEKF and machine learning models under a moderate cloud fraction, the resulting hybrid data assimilation remains reasonably accurate when applied to other geophysical scenarios with nearly clear skies or relatively heavy rainfall, implying the robustness of the algorithm for extrapolation.

     
    more » « less