skip to main content


Title: Local Electronic Structure of Molecular Heterojunctions in a Single‐Layer 2D Covalent Organic Framework
Abstract

The synthesis of a single‐layer covalent organic framework (COF) with spatially modulated internal potentials provides new opportunities for manipulating the electronic structure of molecularly defined materials. Here, the fabrication and electronic characterization of COF‐420: a single‐layer porphyrin‐based square‐lattice COF containing a periodic array of oriented, type II electronic heterojunctions is reported. In contrast to previous donor–acceptor COFs, COF‐420 is constructed from building blocks that yield identical cores upon reticulation, but that are bridged by electrically asymmetric linkers supporting oriented electronic dipoles. Scanning tunneling spectroscopy reveals staggered gap (type II) band alignment between adjacent molecular cores in COF‐420, in agreement with first‐principles calculations. Hirshfeld charge analysis indicates that dipole fields from oriented imine linkages within COF‐420 are the main cause of the staggered electronic structure in this square grid of atomically–precise heterojunctions.

 
more » « less
NSF-PAR ID:
10461003
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials
Volume:
31
Issue:
3
ISSN:
0935-9648
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Phase pure β-(Al x Ga 1−x ) 2 O 3 thin films are grown on (001) oriented β-Ga 2 O 3 substrates via metalorganic chemical vapor deposition. By systematically tuning the precursor molar flow rates, the epitaxial growth of coherently strained β-(Al x Ga 1−x ) 2 O 3 films is demonstrated with up to 25% Al compositions as evaluated by high resolution x-ray diffraction. The asymmetrical reciprocal space mapping confirms the growth of coherent β-(Al x Ga 1−x ) 2 O 3 films (x < 25%) on (001) β-Ga 2 O 3 substrates. However, the alloy inhomogeneity with local segregation of Al along the ([Formula: see text]) plane is observed from atomic resolution STEM imaging, resulting in wavy and inhomogeneous interfaces in the β-(Al x Ga 1−x ) 2 O 3 /β-Ga 2 O 3 superlattice structure. Room temperature Raman spectra of β-(Al x Ga 1−x ) 2 O 3 films show similar characteristics peaks as the (001) β-Ga 2 O 3 substrate without obvious Raman shifts for films with different Al compositions. Atom probe tomography was used to investigate the atomic level structural chemistry with increasing Al content in the β-(Al x Ga 1−x ) 2 O 3 films. A monotonous increase in chemical heterogeneity is observed from the in-plane Al/Ga distributions, which was further confirmed via statistical frequency distribution analysis. Although the films exhibit alloy fluctuations, n-type doping demonstrates good electrical properties for films with various Al compositions. The determined valence and conduction band offsets at β-(Al x Ga 1−x ) 2 O 3 /β-Ga 2 O 3 heterojunctions using x-ray photoelectron spectroscopy reveal the formation of type-II (staggered) band alignment. 
    more » « less
  2. Abstract

    One of the most attractive features of 2D WSe2is a tunability in its electronic and optoelectronic properties depending on the layer number. To harness such unique characteristics for device applications, high quality and easily processable heterojunctions are required and relevant layer‐number‐dependent properties must be understood. Herein, a study is reported on hybrid heterojunctions between 2D WSe2and organic molecules from one‐step solution chemistry and their layer‐number‐dependent properties. Eosin Y (EY) dye is selected as a p‐dopant and uniformly stacked on mechanically exfoliated WSe2flakes via van der Waals interaction, forming a hybrid heterojunction with a type II alignment. The EY‐WSe2heterojunction shows significantly enhanced currents compared to pristine WSe2with a lower barrier height and a longer effective screening length. The work function of the heterostructure is also lower than that of pristine WSe2. The efficient exciton dissociation and doping effect by EY are confirmed by photocurrent and photoluminescence measurements, where WSe2emission is markedly quenched by EY and exciton contribution decreases with layer number. These findings shed critical insights into layer‐number‐dependent electronic and optoelectronic properties of organic‐WSe2layers and also provide simple yet effective means to construct transition metal dichalcogenide‐based heterostructures, which should be valuable for developing layered 2D devices.

     
    more » « less
  3. There is increasing interest in the alpha polytype of Ga2O3 because of its even larger bandgap than the more studied beta polytype, but in common with the latter, there is no viable p-type doping technology. One option is to use p-type oxides to realize heterojunctions and NiO is one of the candidate oxides. The band alignment of sputtered NiO on α-Ga2O3 remains type II, staggered gap for annealing temperatures up to 600 °C, showing that this is a viable approach for hole injection in power electronic devices based on the alpha polytype of Ga2O3. The magnitude of both the conduction and valence band offsets increases with temperature up to 500 °C, but then is stable to 600 °C. For the as-deposited NiO/α-Ga2O3 heterojunction, ΔEV = −2.8 and ΔEC = 1.6 eV, while after 600 °C annealing the corresponding values are ΔEV = −4.4 and ΔEC = 3.02 eV. These values are 1−2 eV larger than for the NiO/β-Ga2O3 heterojunction.

     
    more » « less
  4. Epitaxial growth of κ-phase Ga 2 O 3 thin films is investigated on c-plane sapphire, GaN- and AlN-on-sapphire, and (100) oriented yttria stabilized zirconia (YSZ) substrates via metalorganic chemical vapor deposition. The structural and surface morphological properties are investigated by comprehensive material characterization. Phase pure κ-Ga 2 O 3 films are successfully grown on GaN-, AlN-on-sapphire, and YSZ substrates through a systematical tuning of growth parameters including the precursor molar flow rates, chamber pressure, and growth temperature, whereas the growth on c-sapphire substrates leads to a mixture of β- and κ-polymorphs of Ga 2 O 3 under the investigated growth conditions. The influence of the crystalline structure, surface morphology, and roughness of κ-Ga 2 O 3 films grown on different substrates are investigated as a function of precursor flow rate. High-resolution scanning transmission electron microscopy imaging of κ-Ga 2 O 3 films reveals abrupt interfaces between the epitaxial film and the sapphire, GaN, and YSZ substrates. The growth of single crystal orthorhombic κ-Ga 2 O 3 films is confirmed by analyzing the scanning transmission electron microscopy nanodiffraction pattern. The chemical composition, surface stoichiometry, and bandgap energies of κ-Ga 2 O 3 thin films grown on different substrates are studied by high-resolution x-ray photoelectron spectroscopy (XPS) measurements. The type-II (staggered) band alignments at three interfaces between κ-Ga 2 O 3 and c-sapphire, AlN, and YSZ substrates are determined by XPS, with an exception of κ-Ga 2 O 3 /GaN interface, which shows type-I (straddling) band alignment. 
    more » « less
  5. The characteristics of sputtered NiO for use in pn heterojunctions with Ga2O3 were investigated as a function of sputtering parameters and postdeposition annealing temperature. The oxygen/ nickel and Ni2O3/NiO ratios, as well as the bandgap and resistivity, increased as a function of O2/Ar gas flow ratio. For example, the bandgap increased from 3.7 to 3.9 eV and the resistivity increased from 0.1 to 2.9 Ω cm for the O2/Ar ratio increasing from 1/30 to 1/3. By sharp contrast, the bandgap and Ni2O3/NiO ratio decreased monotonically with postdeposition annealing temperatures up to 600 °C, but the density of films increased due to a higher fraction of NiO being present. Hydrogen is readily incorporated into NiO during exposure to plasmas, as delineated by secondary ion mass spectrometry measurements on deuterated films. The band alignments of NiO films were type II-staggered gaps with both α- and β-Ga2O3. The breakdown voltage of NiO/β-Ga2O3 heterojunction rectifiers was also a strong function of the O2/Ar flow ratio during deposition, with values of 1350 V for 1/3 and 830 V for 1/30.

     
    more » « less