skip to main content


Title: Reindeer turning maritime: Ice‐locked tundra triggers changes in dietary niche utilization
Abstract

The rapid warming of the Arctic may not only alter species’ abundances and distributions, but likely also the trophic interactions within and between ecosystems. On the high‐arctic tundra, extreme warm spells and associated rain‐on‐snow events in winter can encapsulate the vegetation entirely in ground‐ice (i.e., basal ice) and directly or indirectly affect plants, herbivores, and carnivores. However, the implications of such extreme events for trophic interactions and food‐web ecology are generally far from understood. Here, we show that wild Svalbard reindeer populations increasingly isolated by lack of sea‐ice respond to rain‐on‐snow and ice‐locked pastures by increased kelp consumption. Based on annual population surveys in late winters 2006–2015, the proportion of individual reindeer feeding along the shoreline increased the icier the winter. Stable isotope values (δ34S, δ13C, δ15N) of plants, washed‐ashore kelp, and fresh reindeer feces collected along coast‐inland gradients, confirmed ingestion of marine biomass by the reindeer in the shoreline habitat. Thus, even on remote islands and peninsulas increasingly isolated by sea‐ice loss, effects of climate change may be buffered in part by behavioral plasticity and increased use of resource subsidies. This marine dimension of a terrestrial herbivore's realized foraging niche adds to evidence that global warming significantly alters trophic interactions as well as meta‐ecosystem processes.

 
more » « less
NSF-PAR ID:
10461087
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
10
Issue:
4
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Globally, anthropogenic pressures are reducing the abundances of marine species and altering ecosystems through modification of trophic interactions. Yet, consumer declines also disrupt important bottom‐up processes, like nutrient recycling, which are critical for ecosystem functioning. Consumer‐mediated nutrient dynamics (CND) is now considered a major biogeochemical component of most ecosystems, but lacking long‐term studies, it is difficult to predict how CND will respond to accelerating disturbances in the wake of global change. To aid such predictions, we coupled empirical ammonium excretion rates with an 18‐year time series of the standing biomass of common benthic macroinvertebrates in southern California kelp forests. This time series of excretion rates encompassed an extended period of extreme ocean warming, disease outbreaks, and the abolishment of fishing at two of our study sites, allowing us to assess kelp forest CND across a wide range of environmental conditions. At their peak, reef invertebrates supplied an average of 18.3 ± 3.0 µmol NH4+ m−2 hr−1to kelp forests when sea stars were regionally abundant, but dropped to 3.5 ± 1.0 µmol NH4+ m−2 hr−1following their mass mortality due to disease during a prolonged period of extreme warming. However, a coincident increase in the abundance of the California spiny lobster,Palinurus interupptus(Randall, 1840), likely in response to both reduced fishing and a warmer ocean, compensated for much of the recycled ammonium lost to sea star mortality. Both lobsters and sea stars are widely recognized as key predators that can profoundly influence community structure in benthic marine systems. Our study is the first to demonstrate their importance in nutrient cycling, thus expanding their roles in the ecosystem. Climate change is increasing the frequency and severity of warming events, and rising human populations are intensifying fishing pressure in coastal ecosystems worldwide. Our study documents how these projected global changes can drive regime shifts in CND and fundamentally alter a critical ecosystem function.

     
    more » « less
  2. Arctic warming may lead to altered occurrences and strengthening of extreme weather events. Arctic rain-on-snow (ROS) events are of a particular interest in this regard. ROS conditions generate hazards for the transportation sector, ranging from flooding and icing to airport closures, and can severely damage infrastructure through wet-snow avalanches. ROS events, and the resulting ice growth, interfere with foraging by reindeer, caribou, and musk oxen, heavily relied upon species among Indigenous peoples. There have been documented mass starvations of these animals due to ROS. This study addresses the meteorological setups of Arctic ROS events. We focus on cases for Iqaluit, Nunavut, in Canada and Nuuk, Greenland, using ERA5 atmospheric reanalysis, surface weather station data, and atmospheric soundings. At the synoptic scale, we find that blocking patterns play leading roles in ROS initiation, with atmospheric rivers contributing to both direct and indirect effects. Cyclone-induced low-level jets and resultant “warm noses” of higher air temperatures and elevated moisture transport are other key features in ROS generation. We conclude by postulating how climate change may alter the severity and frequency of Arctic ROS events, drawing on this improved knowledge of weather patterns leading to ROS conditions. 
    more » « less
  3. Abstract

    The projected decline in Arctic sea ice extent as the Earth warms in response to increased greenhouse gas concentrations will occur in conjunction with increased precipitation in the Arctic, and more of that precipitation is projected to fall as rain, especially in autumn and early winter. A recently proposed method of offsetting the decline in Arctic sea ice extent would pump seawater on the sea ice surface. Either way, we envision the liquid water first infiltrating the overlying snow layer creating slush. Winter conditions would then freeze the slush to directly thicken the ice. The net reduction in insulation would increase basal growth, adding an indirect thickening effect. Simulating the response to augmented snow layer flooding gives insights that are relevant in the future Arctic with or without the implementation of geoengineering. We use a hierarchy of models to show that flooding snow on sea ice is most effective at thickening Arctic sea ice when flooding begins early in the sea ice growth season. For the geoengineering scheme to be most effective, the pumps must be deployed almost immediately, while there is still a sufficient area of sea ice over which to flood, and must continue for decades. Sea ice loss would be best mitigated if flooding is combined with reducing greenhouse gas emissions. Furthermore, the increase in rainfall over the Arctic in the 21st century is unlikely to offset a substantial portion of the loss due to warming.

     
    more » « less
  4. Abstract Some of the largest climatic changes in the Arctic have been observed in Alaska and the surrounding marginal seas. Near-surface air temperature (T2m), precipitation ( P ), snowfall, and sea ice changes have been previously documented, often in disparate studies. Here, we provide an updated, long-term trend analysis (1957–2021; n = 65 years) of such parameters in ERA5, NOAA U.S. Climate Gridded Dataset (NClimGrid), NOAA National Centers for Environmental Information (NCEI) Alaska climate division, and composite sea ice products preceding the upcoming Fifth National Climate Assessment (NCA5) and other near-future climate reports. In the past half century, annual T2m has broadly increased across Alaska, and during winter, spring, and autumn on the North Slope and North Panhandle (T2m > 0.50°C decade −1 ). Precipitation has also increased across climate divisions and appears strongly interrelated with temperature–sea ice feedbacks on the North Slope, specifically with increased (decreased) open water (sea ice extent). Snowfall equivalent (SFE) has decreased in autumn and spring, perhaps aligned with a regime transition of snow to rain, while winter SFE has broadly increased across the state. Sea ice decline and melt-season lengthening also have a pronounced signal around Alaska, with the largest trends in these parameters found in the Beaufort Sea. Alaska’s climatic changes are also placed in context against regional and contiguous U.S. air temperature trends and show ∼50% greater warming in Alaska relative to the lower-48 states. Alaska T2m increases also exceed those of any contiguous U.S. subregion, positioning Alaska at the forefront of U.S. climate warming. Significance Statement This study produces an updated, long-term trend analysis (1957–2021) of key Alaska climate parameters, including air temperature, precipitation (including snowfall equivalent), and sea ice, to inform upcoming climate assessment reports, including the Fifth National Climate Assessment (NCA5) scheduled for publication in 2023. Key findings include widespread annual and seasonal warming with increased precipitation across much of the state. Winter snowfall has broadly increased, but spring and autumn snowfalls have decreased as rainfall increased. Autumn warming and precipitation increases over the North Slope, in particular, appear related to decreased sea ice coverage in the Beaufort Sea and Chukchi Seas. These trends may result from interrelated processes that accelerate Alaska climate changes relative to those of the contiguous United States. 
    more » « less
  5. Abstract

    The ongoing Arctic warming has been pronounced in winter and has been associated with an increase in downward longwave radiation. While previous studies have demonstrated that poleward moisture flux into the Arctic strengthens downward longwave radiation, less attention has been given to the impact of the accompanying increase in snowfall. Here, utilizing state-of-the-art sea ice models, we show that typical winter snowfall (snow water equivalent) anomalies of around 1.0 cm, accompanied by positive downward longwave radiation anomalies of ∼5 W m−2, can cause basinwide sea ice thinning by around 5 cm in the following spring over the Arctic seas in the Eurasian–Pacific seas. In extreme cases, this is followed by a shrinking of summer ice extent. In the winter of 2016/17, anomalously strong warm, moist air transport combined with ∼2.5-cm increase in snowfall (snow water equivalent) decreased spring ice thickness by ∼10 cm and decreased the following summer sea ice extent by 5%–30%. This study suggests that small changes in the pattern and volume of winter snowfall can strongly impact the sea ice thickness and extent in the following seasons.

     
    more » « less