skip to main content


Title: Hydrothermal vent protistan distribution along the Mariana arc suggests vent endemics may be rare and novel
Summary

Elucidation of the potential roles of single‐celled eukaryotes (protists) in ecosystem function and trophodynamics in hydrothermal vent ecosystems is reliant on information regarding their abundance, distribution and preference for vent habitats. Using high‐throughput 18S rRNA gene sequencing on a diverse suite of hydrothermally influenced and background water samples, we assess the diversity and distribution of protists and identify potential vent endemics. We found that 95% of the recovered sequences belong to operational taxonomic units (OTUs) with a cosmopolitan distribution across vent and non‐vent habitats. Analysis of ‘vent only’ OTUs found in more than one vent sample and co‐occurrence network analysis comparing protist groups to extremophilic reference organisms suggest that the most likely vent endemics are infrequently encountered, potentially in low abundance, and belong to novel lineages, both at the phylum level and within defined clades of Rhizaria and Stramenopila. Potential endemism is inferred for relatives of known apusomonads, excavates and some clades of Syndiniales. Similarity in community composition among samples was low, indicating a strong stochastic component to protist community assembly and suggesting that rare endemics may serve as a reservoir poised to respond to changing environmental conditions in these dynamic systems.

 
more » « less
NSF-PAR ID:
10461313
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Environmental Microbiology
Volume:
21
Issue:
10
ISSN:
1462-2912
Page Range / eLocation ID:
p. 3796-3815
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Though historically understudied, due in large part to most species being uncultivable, microbial eukaryotes (i.e. protists) are abundant and widespread across diverse habitats. Recent advances in molecular techniques, including metabarcoding, allow for the characterization of poorly known protist lineages. This study surveys the diversity of SAR (Stramenopila, Alveolata, and Rhizaria), a major eukaryotic clade that is estimated to represent about half of all eukaryotic diversity. SAR lineages use varied metabolic strategies like mixotrophy in dinoflagellates (Alveolata), parasitism in apicomplexans (Alveolata) and labyrinthulids (Stramenopila), and life cycle stages that include encystment and attachment (e.g. in ciliates, Alveolata) to survive in highly dynamic habitats. Using metabarcoding primers designed specifically to target a portion of the 18S small subunit ribosomal RNA (SSU-rRNA) gene of SAR lineages, we compare protist community composition from tide pools in Acadia National Park, Maine, USA. We characterize over 500 lineages, here operational taxonomic units (OTUs), many of which are found abundant in the tide pool environment. We also find that communities vary by month sampled and exhibit patterns by size (i.e. macro-, micro-, and nano-sized). Taken together, these data allow us to further catalog protist diversity in extreme environments (e.g. those subject to extreme fluctuations in temperature and salinity during tidal cycles). Such data are critical in the explorations of biodiversity patterns among microorganisms on our rapidly changing planet.

     
    more » « less
  2. ABSTRACT

    The symbiosis between termites and their hindgut protists is mutually obligate and vertically inherited. It was established by the late Jurassic in the cockroach ancestors of termites as they transitioned to wood feeding. Since then, protist symbionts have been transmitted from host generation to host generation by proctodeal trophallaxis (anal feeding). The protists belong to multiple lineages within the eukaryotic superphylum Metamonada. Most of these lineages have evolved large cells with complex morphology, unlike the non‐termite‐associated Metamonada. The species richness and taxonomic composition of symbiotic protist communities varies widely across termite lineages, especially within the deep‐branching clade Teletisoptera. In general, closely related termites tend to harbour closely related protists, and deep‐branching termites tend to harbour deep‐branching protists, reflecting their broad‐scale co‐diversification. A closer view, however, reveals a complex distribution of protist lineages across hosts. Some protist taxa are common, some are rare, some are widespread, and some are restricted to a single host family or genus. Some protist taxa can be found in only a few, distantly related, host species. Thus, the long history of co‐diversification in this symbiosis has been complicated by lineage‐specific loss of symbionts, transfer of symbionts from one host lineage to another, and by independent diversification of the symbionts relative to their hosts. This review aims to introduce the biology of this important symbiosis and serve as a gateway to the diversity and systematics literature for both termites and protists. A searchable database with all termite‐protist occurrence records and taxonomic references is provided as a supplementary file to encourage and facilitate new research in this field.

     
    more » « less
  3. Summary

    The structure and function of microbial communities inhabiting the subseafloor near hydrothermal systems are influenced by fluid geochemistry, geologic setting and fluid flux between vent sites, as well as biological interactions. Here, we used genome‐resolved metagenomics and metatranscriptomics to examine patterns of gene abundance and expression and assess potential niche differentiation in microbial communities in venting fluids from hydrothermal vent sites at the Mid‐Cayman Rise. We observed similar patterns in gene and transcript abundance between two geochemically distinct vent fields at the community level but found that each vent site harbours a distinct microbial community with differing transcript abundances for individual microbial populations. Through an analysis of metabolic pathways in 64 metagenome‐assembled genomes (MAGs), we show that MAG transcript abundance can be tied to differences in metabolic pathways and to potential metabolic interactions between microbial populations, allowing for niche‐partitioning and divergence in both population distribution and activity. Our results illustrate that most microbial populations have a restricted distribution within the seafloor, and that the activity of those microbial populations is tied to both genome content and abiotic factors.

     
    more » « less
  4. Microbial eukaryotes (or protists) in marine ecosystems are a link between primary producers and all higher trophic levels, and the rate at which heterotrophic protistan grazers consume microbial prey is a key mechanism for carbon transport and recycling in microbial food webs. At deep-sea hydrothermal vents, chemosynthetic bacteria and archaea form the base of a food web that functions in the absence of sunlight, but the role of protistan grazers in these highly productive ecosystems is largely unexplored. Here, we pair grazing experiments with a molecular survey to quantify protistan grazing and to characterize the composition of vent-associated protists in low-temperature diffuse venting fluids from Gorda Ridge in the northeast Pacific Ocean. Results reveal protists exert higher predation pressure at vents compared to the surrounding deep seawater environment and may account for consuming 28 to 62% of the daily stock of prokaryotic biomass within discharging hydrothermal vent fluids. The vent-associated protistan community was more species rich relative to the background deep sea, and patterns in the distribution and co-occurrence of vent microbes provide additional insights into potential predator–prey interactions. Ciliates, followed by dinoflagellates, Syndiniales, rhizaria, and stramenopiles, dominated the vent protistan community and included bacterivorous species, species known to host symbionts, and parasites. Our findings provide an estimate of protistan grazing pressure within hydrothermal vent food webs, highlighting the important role that diverse protistan communities play in deep-sea carbon cycling.

     
    more » « less
  5. Abstract

    The relative importance of different ecological processes that shape community structure is a central but poorly understood topic in protist ecology. This study used an 18S rRNA gene sequencing approach to examine the relative contributions of environmental selective (environmental filtering) and neutral processes (dispersal and ecological drift) in the community assembly of three diverse protist groups (Bacillariophyta, Cercozoa, and Ciliophora) from intertidal sediment samples spanning a geographical distance up to 12,000 km. All three protist communities exhibited similar and distinct biogeographical patterns, and followed strong distance–decay relationships at continental scale (ca. 12,000 km), regional scale (ca. 1500 km), and local scale (ca. 50 km). Network analysis showed that temperature, salinity, nitrite and nitrate nitrogen, total nitrogen, and 0.1–0.25 mm grain size together associated with 60.8%, 55.5%, and 50.0% of the OTUs, which represented 68.1%, 58.5%, and 59.2% of sequence abundances for Bacillariophyta, Cercozoa, and Ciliophora co‐occurrence networks, respectively, indicating that these environmental variables played the central roles in influencing community composition. On the other hand, a neutral community model explained 73.6%, 64.2%, and 70.2% of community variation for Bacillariophyta, Cercozoa, and Ciliophora, respectively. More importantly, variation partitioning and partial Mantel tests showed that environmental selection exhibited a slightly greater influence on Ciliophora compared to spatial factors, but both components were roughly equivalent in Bacillariophyta and Cercozoa communities. Taken together, these results demonstrate that both environmental selection and neutral processes play important roles in creating the biogeographical patterns of protist communities in intertidal sandy beach ecosystems.

     
    more » « less