skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM to 12:00 PM ET on Tuesday, March 25 due to maintenance. We apologize for the inconvenience.


Title: Exploring the diversity of microeukaryotic communities in New England tide pools
Though historically understudied, due in large part to most species being uncultivable, microbial eukaryotes (i.e. protists) are abundant and widespread across diverse habitats. Recent advances in molecular techniques, including metabarcoding, allow for the characterization of poorly known protist lineages. This study surveys the diversity of SAR (Stramenopila, Alveolata, and Rhizaria), a major eukaryotic clade that is estimated to represent about half of all eukaryotic diversity. SAR lineages use varied metabolic strategies like mixotrophy in dinoflagellates (Alveolata), parasitism in apicomplexans (Alveolata) and labyrinthulids (Stramenopila), and life cycle stages that include encystment and attachment (e.g. in ciliates, Alveolata) to survive in highly dynamic habitats. Using metabarcoding primers designed specifically to target a portion of the 18S small subunit ribosomal RNA (SSU-rRNA) gene of SAR lineages, we compare protist community composition from tide pools in Acadia National Park, Maine, USA. We characterize over 500 lineages, here operational taxonomic units (OTUs), many of which are found abundant in the tide pool environment. We also find that communities vary by month sampled and exhibit patterns by size (i.e. macro-, micro-, and nano-sized). Taken together, these data allow us to further catalog protist diversity in extreme environments (e.g. those subject to extreme fluctuations in temperature and salinity during tidal cycles). Such data are critical in the explorations of biodiversity patterns among microorganisms on our rapidly changing planet.  more » « less
Award ID(s):
1924570
PAR ID:
10474533
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Inter-Research Science Publisher
Date Published:
Journal Name:
Aquatic Microbial Ecology
Volume:
89
ISSN:
0948-3055
Page Range / eLocation ID:
143 to 155
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Archibald, John (Ed.)
    Abstract Epigenetic processes in eukaryotes play important roles through regulation of gene expression, chromatin structure, and genome rearrangements. The roles of chromatin modification (e.g., DNA methylation and histone modification) and non-protein-coding RNAs have been well studied in animals and plants. With the exception of a few model organisms (e.g., Saccharomyces and Plasmodium), much less is known about epigenetic toolkits across the remainder of the eukaryotic tree of life. Even with limited data, previous work suggested the existence of an ancient epigenetic toolkit in the last eukaryotic common ancestor. We use PhyloToL, our taxon-rich phylogenomic pipeline, to detect homologs of epigenetic genes and evaluate their macroevolutionary patterns among eukaryotes. In addition to data from GenBank, we increase taxon sampling from understudied clades of SAR (Stramenopila, Alveolata, and Rhizaria) and Amoebozoa by adding new single-cell transcriptomes from ciliates, foraminifera, and testate amoebae. We focus on 118 gene families, 94 involved in chromatin modification and 24 involved in non-protein-coding RNA processes based on the epigenetics literature. Our results indicate 1) the presence of a large number of epigenetic gene families in the last eukaryotic common ancestor; 2) differential conservation among major eukaryotic clades, with a notable paucity of genes within Excavata; and 3) punctate distribution of epigenetic gene families between species consistent with rapid evolution leading to gene loss. Together these data demonstrate the power of taxon-rich phylogenomic studies for illuminating evolutionary patterns at scales of >1 billion years of evolution and suggest that macroevolutionary phenomena, such as genome conflict, have shaped the evolution of the eukaryotic epigenetic toolkit. 
    more » « less
  2. ABSTRACT The symbiosis between termites and their hindgut protists is mutually obligate and vertically inherited. It was established by the late Jurassic in the cockroach ancestors of termites as they transitioned to wood feeding. Since then, protist symbionts have been transmitted from host generation to host generation by proctodeal trophallaxis (anal feeding). The protists belong to multiple lineages within the eukaryotic superphylum Metamonada. Most of these lineages have evolved large cells with complex morphology, unlike the non‐termite‐associated Metamonada. The species richness and taxonomic composition of symbiotic protist communities varies widely across termite lineages, especially within the deep‐branching clade Teletisoptera. In general, closely related termites tend to harbour closely related protists, and deep‐branching termites tend to harbour deep‐branching protists, reflecting their broad‐scale co‐diversification. A closer view, however, reveals a complex distribution of protist lineages across hosts. Some protist taxa are common, some are rare, some are widespread, and some are restricted to a single host family or genus. Some protist taxa can be found in only a few, distantly related, host species. Thus, the long history of co‐diversification in this symbiosis has been complicated by lineage‐specific loss of symbionts, transfer of symbionts from one host lineage to another, and by independent diversification of the symbionts relative to their hosts. This review aims to introduce the biology of this important symbiosis and serve as a gateway to the diversity and systematics literature for both termites and protists. A searchable database with all termite‐protist occurrence records and taxonomic references is provided as a supplementary file to encourage and facilitate new research in this field. 
    more » « less
  3. The Albany pitcher plant, Cephalotus follicularis , has evolved cup-shaped leaves and a carnivorous habit completely independently from other lineages of pitcher plants. It is the only species in the family Cephalotaceae and is restricted to a small region of Western Australia. Here, we used metabarcoding to characterize the bacterial and eukaryotic communities living in C. follicularis pitchers at two different sites. Bacterial and eukaryotic communities were correlated in both richness and composition; however, the factors associated with richness were not the same across bacteria and eukaryotes, with bacterial richness differing with fluid color, and eukaryotic richness differing with the concentration of DNA extracted from the fluid, a measure roughly related to biomass. For turnover in composition, the variation in both bacterial and eukaryotic communities primarily differed with fluid acidity, fluid color, and sampling site. We compared C. follicularis -associated community diversity with that of Australian Nepenthes mirabilis , as well as a global comparison of Southeast Asian Nepenthes and North American Sarracenia . Our results showed similarity in richness with communities from other pitcher plants, and specific bacterial taxa shared among all three independent lineages of pitcher plants. Overall, we saw convergence in richness and particular clades colonizing pitcher plants around the world, suggesting that these highly specialized habitats select for certain numbers and types of inhabitants. 
    more » « less
  4. Hydrogenotrophic methanogens are ubiquitous chemoautotrophic archaea inhabiting globally distributed deep-sea hydrothermal vent ecosystems and associated subseafloor niches within the rocky subseafloor, yet little is known about how they adapt and diversify in these habitats. To determine genomic variation and selection pressure within methanogenic populations at vents, we examined five Methanothermococcus single cell amplified genomes (SAGs) in conjunction with 15 metagenomes and 10 metatranscriptomes from venting fluids at two geochemically distinct hydrothermal vent fields on the Mid-Cayman Rise in the Caribbean Sea. We observed that some Methanothermococcus lineages and their transcripts were more abundant than others in individual vent sites, indicating differential fitness among lineages. The relative abundances of lineages represented by SAGs in each of the samples matched phylogenetic relationships based on single-copy universal genes, and genes related to nitrogen fixation and the CRISPR/Cas immune system were among those differentiating the clades. Lineages possessing these genes were less abundant than those missing that genomic region. Overall, patterns in nucleotide variation indicated that the population dynamics of Methanothermococcus were not governed by clonal expansions or selective sweeps, at least in the habitats and sampling times included in this study. Together, our results show that although specific lineages of Methanothermococcus co-exist in these habitats, some outcompete others, and possession of accessory metabolic functions does not necessarily provide a fitness advantage in these habitats in all conditions. This work highlights the power of combining single-cell, metagenomic, and metatranscriptomic datasets to determine how evolution shapes microbial abundance and diversity in hydrothermal vent ecosystems. 
    more » « less
  5. Abstract Islands make up a large proportion of Earth's biodiversity, yet are also some of the most sensitive systems to environmental perturbation. Biogeographic theory predicts that geologic age, area, and isolation typically drive islands' diversity patterns, and thus potentially impact non‐native spread and community homogenization across island systems. One limitation in testing such predictions has been the difficulty of performing comprehensive inventories of island biotas and distinguishing native from introduced taxa. Here, we use DNA metabarcoding and statistical modelling as a high throughput method to survey community‐wide arthropod richness, the proportion of native and non‐native species, and the incursion of non‐natives into primary habitats on three archipelagos in the Pacific – the Ryukyus, the Marianas and Hawaii – which vary in age, isolation and area. Diversity patterns largely match expectations based on island biogeography theory, with the oldest and most geographically connected archipelago, the Ryukyus, showing the highest taxonomic richness and lowest proportion of introduced species. Moreover, we find evidence that forest habitats are more resilient to incursions of non‐natives in the Ryukyus than in the less taxonomically rich archipelagos. Surprisingly, we do not find evidence for biotic homogenization across these three archipelagos: the assemblage of non‐native species on each island is highly distinct. Our study demonstrates the potential of DNA metabarcoding to facilitate rapid estimation of biogeographic patterns, the spread of non‐native species, and the resilience of ecosystems. 
    more » « less