Abstract. To understand the erosivity of the eastern portion of the Laurentide Ice Sheet and the isotopic characteristics of the sediment it transported, we sampled buried sand from deglacial features (eskers and deltas) across eastern Canada (n = 10), a landscape repeatedly covered by the Quebec-Labrador Ice Dome. We measured concentrations of 10Be and 26Al in quartz isolated from the sediment and, after correcting for sub-surface cosmic-ray exposure after Holocene deglaciation, used these results to determine nuclide concentrations at the time the ice sheet deposited the sediment. To determine what percentage of sediment moving through streams and rivers currently draining the field area was derived from incision of thick glacial deposits as opposed to surface erosion, we used 10Be and 26Al as tracers by collecting and analyzing modern river sand sourced from Holocene-exposed landscapes (n = 11). We find that all ten deglacial sediment samples contain measurable concentrations of 10Be and 26Al equivalent on average to several thousand years of surface exposure – after correction, based on sampling depth, for Holocene nuclide production after deposition. Error-weighted averages (1 standard deviation errors) of measured 26Al/10Be ratios for both corrected deglacial (6.1 ± 1.2) and modern sediment samples (6.6 ± 0.5) are slightly lower than the production ratio at high latitudes (7.3 ± 0.3) implying burial and preferential decay of 26Al, the shorter-lived nuclide. However, five deglacial samples collected closer to the center of the former Quebec-Labrador Ice Dome have much lower corrected 26Al/10Be ratios (5.2 ± 0.8) than five samples collected closer to the former ice margins (7.0 ± 0.7). Modern river sand contains on average about 1.75 times the concentration of both nuclides compared to deglacial sediment corrected for Holocene exposure. The ubiquitous presence of 10Be and 26Al in eastern Quebec deglacial sediment is consistent with many older-than-expected exposure ages, reported here and by others, for bedrock outcrops and boulders once covered by the Quebec-Labrador Ice Dome. Together, these data suggest that glacial erosion and sediment transport in eastern Canada were insufficient to remove material containing cosmogenic nuclides produced during prior interglacial periods both from at least some bedrock outcrops and from all glacially transported sediment we sampled. Near the center of the Quebec-Labrador Ice Dome, ratios of 26Al/10Be are below those characteristic of surface production at high latitude. This suggests burial of the glacially transported sediment for at least many hundreds of thousands of years and the possibility that ice at the center of the Quebec-Labrador Ice Dome survived many interglacials when more distal ice melted away.
Quantifying glacial erosion contributes to our understanding of landscape evolution and topographic relief production in high altitude and high latitude areas. Combining
- PAR ID:
- 10461414
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Earth Surface Processes and Landforms
- Volume:
- 44
- Issue:
- 4
- ISSN:
- 0197-9337
- Page Range / eLocation ID:
- p. 918-932
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Glacial and periglacial sediments and landforms record the chronology of glaciation and amount of Pleistocene erosion during colder periods that added substantially to global sediment budgets and contributed to the global CO2 cycle. The now-drained glacial Lake Devlin, dammed in a Front Range tributary valley by a glacier in the North Branch of Boulder Creek (Colorado, USA) preserves an important sedimentary archive of the ca. 32−14 ka Pinedale glaciation, recording both paleoclimate information and an integrated measure of glacial and periglacial erosion rates over a full glacial cycle. Despite rapid erosion of fine-grained deposits after the lake drained, most sediment generated during Pinedale time remains as legacy deposits in the catchment. Geomorphic evidence and dating of glaciolacustrine sediment from surface exposures demonstrate that the ca. 30 ka Pinedale glacial advance was nearly as extensive as the local Late Glacial Maximum at ca. 20 ka. Sedimentary archives dated by 14C, optically stimulated luminescence, and cosmogenic nuclides extend earlier studies (Madole et al., 1973) of pollen and magnetic susceptibility (MS) in cores from the glaciolacustrine deposits of Lake Devlin and of Pinedale climate. Records suggest short-term warming and biotic change at ca. 15 ka after ∼14 kyr of cold, dry conditions punctuated by MS peaks at ca. 26.5 ka, 20 ka, and 16.5 ka. Lake Devlin drained catastrophically after ca. 14 ka, millennia after ice had retreated upvalley from the lateral moraine that dammed the lake. Sediment production during the Pinedale was equivalent to a periglacial and glacial erosion rate of ∼70 mm kyr−1, several times higher than long-term rates in the adjacent Front Range, but much lower than rates measured where modern glaciers are eroding weak bedrock in zones of rapid rock uplift, such as SSE Alaska, USA. Data from the Lake Devlin basin contribute to contemporary discussions of how glacial erosion influences the global CO2 cycle.
-
Abstract. Studying the retreat of the Patagonian Ice Sheet (PIS) during the last deglaciation represents an important opportunity to understand how ice sheets outside the polar regions have responded to deglacial changes in temperature and large-scale atmospheric circulation. At the northernmost extension of the PIS during the Last Glacial Maximum (LGM), the Chilean Lake District (CLD) was influenced by the southern westerly winds (SWW), which strongly modulated the hydrologic and heat budgets of the region. Despite progress in constraining the nature and timing of deglacial ice retreat across this area, considerable uncertainty in the glacial history still exists due to a lack of geologic constraints on past ice margin change. Where the glacial chronology is lacking, ice sheet models can provide important insight into our understanding of the characteristics and drivers of deglacial ice retreat. Here we apply the Ice Sheet and Sea-level System Model (ISSM) to simulate the LGM and last deglacial ice history of the PIS across the CLD at high spatial resolution (450 m). We present a transient simulation of ice margin change across the last deglaciation using climate inputs from the National Center for Atmospheric Research Community Climate System Model (CCSM3) Trace-21ka experiment. At the LGM, the simulated ice extent across the CLD agrees well with the most comprehensive reconstruction of PIS ice history (PATICE). Coincident with deglacial warming, ice retreat ensues after 19 ka, with large-scale ice retreat occurring across the CLD between 18 and 16.5 ka. By 17 ka, the northern portion of the CLD becomes ice free, and by 15 ka, ice only persists at high elevations as mountain glaciers and small ice caps. Our simulated ice history agrees well with PATICE for early deglacial ice retreat but diverges at and after 15 ka, where the geologic reconstruction suggests the persistence of an ice cap across the southern CLD until 10 ka. However, given the high uncertainty in the geologic reconstruction of the PIS across the CLD during the later deglaciation, this work emphasizes a need for improved geologic constraints on past ice margin change. While deglacial warming drove the ice retreat across this region, sensitivity tests reveal that modest variations in wintertime precipitation (∼10 %) can modulate the pacing of ice retreat by up to 2 ka, which has implications when comparing simulated outputs of ice margin change to geologic reconstructions. While we find that TraCE-21ka simulates large-scale changes in the SWW across the CLD that are consistent with regional paleoclimate reconstructions, the magnitude of the simulated precipitation changes is smaller than what is found in proxy records. From our sensitivity analysis, we can deduce that larger anomalies in precipitation, as found in paleoclimate proxies, may have had a large impact on modulating the magnitude and timing of deglacial ice retreat. This fact highlights an additional need for better constraints on the deglacial change in strength, position, and extent of the SWW as it relates to understanding the drivers of deglacial PIS behavior.
-
Abstract Bedrock erosion and canyon formation during extreme floods have dramatically altered landscapes on Earth and Mars. Grand Coulee was carved by outburst floods from Pleistocene glacial Lake Missoula and is the largest canyon in the Channeled Scabland, a megaflood‐scoured landscape in the northwestern USA. Quantifying paleo‐discharge is required to understand how landscapes evolve in response to extreme events, but there are few constraints on the magnitude of the floods that incised Grand Coulee; hence, we used hydraulic modeling and geologic evidence to quantify paleo‐flood discharges during different phases of canyon incision. When upper Grand Coulee was incising by headward waterfall retreat, the paleo‐discharge was 2.6 × 106 m3s−1, which produced shear stresses great enough to cause the waterfall to retreat via toppling of basalt columns. The largest possible flood through upper Grand Coulee, a Missoula flood which raised glacial Lake Columbia to a stage of 750 m, produced a modeled discharge of 7.6 × 106 m3s−1. The discharges associated with waterfall retreat and drainage of glacial Lake Columbia are >80% and ∼50% lower, respectively, than the 14–17 × 106 m3s−1discharge predicted by assuming the present‐day topography was inundated to the elevation of high‐water marks. Due to bedrock incision, high‐water marks may overestimate paleo‐flow depth in canyons carved by floods, hence bedrock erosion should be considered when estimating paleo‐discharge in flood‐carved canyons. Our results indicate that outburst floods with discharges and flow depths much lower than those required to inundate high‐water marks are capable of carving deep canyons.
-
The causes of the Mid-Pleistocene Transition, the shift from ∼41-ky to 100-ky interglacial–glacial cycles and more intense ice ages, remain intensely debated, as this fundamental change occurred between ∼1,250 and 650 ka without substantial changes in astronomical climate forcings. Recent studies disagree about the relative importance of events and processes in the Northern and Southern Hemispheres, as well as whether the shift occurred gradually over several interglacial–glacial cycles or abruptly at ∼900 ka. We address these issues using a north-to-south reconstruction of the Atlantic arm of the global meridional overturning ocean circulation, a primary means for distributing heat around the globe, using neodymium (Nd) isotopes. Results reveal a period of intense erosion affecting the cratonic shields surrounding the North Atlantic between Marine Isotope Stages (MIS) 27 and 25 (∼980 and 950 ka), reflected by unusually low Nd isotope ratios in deep North Atlantic seawater. This episode preceded a major ocean circulation weakening between MIS 25 and 21 (950 and 860 ka) that coincided with the first ∼100-ky-long interglacial–glacial onset of Northern Hemisphere glaciation at around 2.4 to 2.8 Ma. The data point to a Northern Hemisphere
– sourced initiation for the transition, possibly induced through regolith loss and increased exposure of the crystalline bedrock, which would lead to increased friction, enabling larger ice sheets that are characteristic of the 100-ky interglacial–glacial cycles.