skip to main content


Title: Early Holocene ice on the Begguya plateau (Mt. Hunter, Alaska) revealed by ice core 14 C age constraints

Abstract. Investigating North Pacific climate variability during warmintervals prior to the Common Era can improve our understanding of thebehavior of ocean–atmosphere teleconnections between low latitudes and theArctic under future warming scenarios. However, most of the existing icecore records from the Alaskan and Yukon region only allow access to climateinformation covering the last few centuries. Here we present asurface-to-bedrock age scale for a 210 m long ice core recovered in 2013from the summit plateau of Begguya (Mt. Hunter; Denali National Park,Central Alaska). Combining dating by annual layer counting with absolutedates from micro-radiocarbon dating, a continuous chronology for the entireice core archive was established using an ice flow model. Calibrated14C ages from the deepest section (209.1 m, 7.7 to 9.0 ka cal BP)indicate that basal ice on Begguya is at least of early Holocene origin. Aseries of samples from a shallower depth interval (199.8 to 206.6 m) weredated with near-uniform 14C ages (3 to 5 ka cal BP). Our resultssuggest this may be related to an increase in annual net snow accumulationrates over this period following the Northern Hemisphere Holocene ClimateOptimum (around 8 to 5 kyr BP). With absolute dates constraining thetimescale for the last >8 kyr BP, this paleo-archive will allowfuture investigations of Holocene climate and the regional evolution ofspatial and temporal changes in atmospheric circulation and hydroclimate inthe North Pacific.

 
more » « less
Award ID(s):
2002483
NSF-PAR ID:
10498108
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
International Glaciological Society
Date Published:
Journal Name:
The Cryosphere
Volume:
17
Issue:
9
ISSN:
1994-0424
Page Range / eLocation ID:
4007 to 4020
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Investigation of North Pacific climate variability during warm intervals outside of the Common Era is essential for addressing questions regarding ocean-atmosphere teleconnections between low latitudes and the Arctic under future warming scenarios. However, most of existing ice cores extracted from Alaska/Yukon region archive climate information from the last few centuries. This dataset contains radiocarbon (14C) data from a 208 meter surface-to-bedrock ice core recovered from the summit plateau of Mt. Hunter in central Alaska in 2013. By applying radiocarbon dating on carbonaceous aerosols, a continuous depth-age relationship has been established in the Mt. Hunter ice core. Calibrated 14C ages from the two lowest samples (7,946-10,226 cal BP and 7,018-7,975 cal BP) indicate that basal ice on Mt. Hunter has an early Holocene (> 8 kyr) origin. We also show that samples from depth of 161.0-166.1 m weq have nearly uniform 14C ages (3,200 to 3,500 cal BP). One possible explanation is an increase in snow accumulation at Mt. Hunter during regional neoglaciation. When paired with the Mt. Logan PRCol record, the only other Holocene-length ice core from North Pacific region, the Mt. Hunter ice core provides the possibility to investigate spatial changes in high-elevation Holocene hydroclimate. 
    more » « less
  2. Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast. 
    more » « less
  3. Abstract

    Sub‐centennial oxygen (δ18O) isotopes of ostracod and authigenic calcite from Squanga Lake provides evidence of hydroclimatic extremes and a series of post‐glacial climate system reorganizations for the interior region of northwest Canada. Authigenic calciteδ18O values range from −16‰ to −21‰ and are presently similar to modern lake water and annual precipitation values. Ostracodδ18O record near identical trends with calcite, offset by +1.7 ± 0.6‰. At 11 ka BP (kaBP = thousands of years before 1950), higherδ18O values reflect decreased precipitation−evaporation (P−E) balance from residual ice sheet influences on moisture availability. A trend to lowerδ18O values until ∼8 ka BP reflects a shift to wetter conditions, and reorganization of atmospheric circulation. The last millennium and modern era are relatively dry, though not as dry as the early Holocene extreme. North Pacific climate dynamics remained an important driver of P−E balance in northwest Canada throughout the Holocene.

     
    more » « less
  4. Abstract. Here we present a newly developed ice core gas-phase proxy that directlysamples a component of the large-scale atmospheric circulation:synoptic-scale pressure variability. Surface pressure changes weakly disrupt gravitational isotopic settling in the firn layer, which is recorded in krypton-86 excess (86Krxs). The 86Krxs may therefore reflect the time-averaged synoptic pressure variability over several years (site “storminess”), but it likely cannot record individual synoptic events as ice core gas samples typically average over several years. We validate 86Krxs using late Holocene ice samples from 11 Antarctic ice cores and 1 Greenland ice core that collectively represent a wide range of surface pressure variability in the modern climate. We find a strong spatial correlation (r=-0.94, p<0.01) between site average 86Krxs and time-averaged synoptic variability from reanalysis data. The main uncertainties in the analysis are the corrections for gas loss and thermal fractionation and the relatively large scatter in the data. Limited scientific understanding of the firn physics and potential biases of 86Krxs require caution in interpreting this proxy at present. We show that Antarctic 86Krxs appears to be linked to the position of the Southern Hemisphere eddy-driven subpolar jet (SPJ), with a southern position enhancing pressure variability. We present a 86Krxs record covering the last 24 kyr from the West Antarctic Ice Sheet (WAIS) Divide ice core. Based on the empirical spatial correlation of synoptic activity and 86Krxs at various Antarctic sites, we interpret this record to show that West Antarctic synoptic activity is slightly below modern levels during the Last Glacial Maximum (LGM), increases during the Heinrich Stadial 1 and Younger Dryas North Atlantic cold periods, weakens abruptly at the Holocene onset, remains low during the early and mid-Holocene, and gradually increases to its modern value. The WAIS Divide 86Krxs record resembles records of monsoon intensity thought to reflect changes in the meridional position of the Intertropical Convergence Zone (ITCZ) on orbital and millennial timescales such that West Antarctic storminess is weaker when the ITCZ is displaced northward and stronger when it is displaced southward. We interpret variations in synoptic activity as reflecting movement of the South Pacific SPJ in parallel to the ITCZ migrations, which is the expected zonal mean response of the eddy-driven jet in models and proxy data. Past changes to Pacific climate and the El Niño–Southern Oscillation (ENSO) may amplify the signal of the SPJ migration. Our interpretation is broadly consistent with opal flux records from the Pacific Antarctic zone thought to reflect wind-driven upwelling. We emphasize that 86Krxs is a new proxy, and more work is called for to confirm, replicate, and better understand these results; until such time, our conclusions regarding past atmospheric dynamics remainspeculative. Current scientific understanding of firn air transport andtrapping is insufficient to explain all the observed variations in86Krxs. A list of suggested future studies is provided. 
    more » « less
  5. Abstract

    Perspectives on past climate using lake sediments are critical for assessing modern and future climate change. These perspectives are especially important for water-stressed regions such as the western United States. One such region is northwestern California (CA), where Holocene-length hydroclimatic records are scarce. Here, we present a 9000-year, relative lake level record from Maddox Lake (CA) using a multi-indicator approach. The Early Holocene is characterized by variably low lake levels with a brief excursion to wetter climates/relative highstand ca. 8.4–8.06 cal ka BP, possibly related to the 8.2 ka cold event and changing Atlantic Meridional Overturning Circulation (AMOC). From 5.2–0.55 cal ka BP, Maddox Lake experienced a long-term regression, tracking changes in summer-winter insolation, tropical and northeast Pacific SSTs, and the southward migration of the ITCZ. This gradual regression culminated in a pronounced relative lowstand during the Medieval Climatic Anomaly (MCA). A marked relative highstand followed the MCA, correlative to the Little Ice Age. The latter reflects a far-field response to North Atlantic volcanism, solar variability, and possibly changes in AMOC and Arctic sea ice extent. Our results further confirm the hydroclimatic sensitivity of northwest California to various forcings including those emanating from the North Atlantic.

     
    more » « less