skip to main content


Title: The hydraulic efficiency–safety trade‐off differs between lianas and trees
Abstract

Hydraulic traits are important for woody plant functioning and distribution. Associations among hydraulic traits, other leaf and stem traits, and species’ performance are relatively well understood for trees, but remain poorly studied for lianas. We evaluated the coordination among hydraulic efficiency (i.e., maximum hydraulic conductivity), hydraulic safety (i.e., cavitation resistance), a suite of eight morphological and physiological traits, and species’ abundances for saplings of 24 liana species and 27 tree species in wet tropical forests in Panama. Trees showed a strong trade‐off between hydraulic efficiency and hydraulic safety, whereas efficiency and safety were decoupled in lianas. Hydraulic efficiency was strongly and similarly correlated with acquisitive traits for lianas and trees (e.g., positively with gas exchange rates and negatively with wood density). Hydraulic safety, however, showed no correlations with other traits in lianas, but with several in trees (e.g., positively with leaf dry matter content and wood density and negatively with gas exchange rates), indicating that in lianas hydraulic efficiency is an anchor trait because it is correlated with many other traits, while in trees both efficiency and safety are anchor traits. Traits related to shade tolerance (e.g., low specific leaf area and high wood density) were associated with high local tree sapling abundance, but not with liana abundance. Our results suggest that different, yet unknown mechanisms determine hydraulic safety and local‐scale abundance for lianas compared to trees. For trees, the trade‐off between efficiency and safety will provide less possibilities for ecological strategies. For lianas, however, the uncoupling of efficiency and safety could allow them to have high hydraulic efficiency, and hence high growth rates, without compromising resistance to cavitation under drought, thus allowing them to thrive and outperform trees under drier conditions.

 
more » « less
NSF-PAR ID:
10461429
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology
Volume:
100
Issue:
5
ISSN:
0012-9658
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Despite their low contribution to forest carbon stocks, lianas (woody vines) play an important role in the carbon dynamics of tropical forests. As structural parasites, they hinder tree survival, growth and fecundity; hence, they negatively impact net ecosystem productivity and long‐term carbon sequestration.

    Competition (for water and light) drives various forest processes and depends on the local abundance of resources over time. However, evaluating the relative role of resource availability on the interactions between lianas and trees from empirical observations is particularly challenging. Previous approaches have used labour‐intensive and ecosystem‐scale manipulation experiments, which are infeasible in most situations.

    We propose to circumvent this challenge by evaluating the uncertainty of water and light capture processes of a process‐based vegetation model (ED2) including the liana growth form. We further developed the liana plant functional type in ED2 to mechanistically simulate water uptake and transport from roots to leaves, and start the model from prescribed initial conditions. We then used the PEcAn bioinformatics platform to constrain liana parameters and run uncertainty analyses.

    Baseline runs successfully reproduced ecosystem gas exchange fluxes (gross primary productivity and latent heat) and forest structural features (leaf area index, aboveground biomass) in two sites (Barro Colorado Island, Panama and Paracou, French Guiana) characterized by different rainfall regimes and levels of liana abundance.

    Model uncertainty analyses revealed that water limitation was the factor driving the competition between trees and lianas at the drier site (BCI), and during the relatively short dry season of the wetter site (Paracou). In young patches, light competition dominated in Paracou but alternated with water competition between the wet and the dry season on BCI according to the model simulations.

    The modelling workflow also identified key liana traits (photosynthetic quantum efficiency, stomatal regulation parameters, allometric relationships) and processes (water use, respiration, climbing) driving the model uncertainty. They should be considered as priorities for future data acquisition and model development to improve predictions of the carbon dynamics of liana‐infested forests.

    Synthesis. Competition for water plays a larger role in the interaction between lianas and trees than previously hypothesized, as demonstrated by simulations from a process‐based vegetation model.

     
    more » « less
  2. Abstract

    Lianas and other climbing plants are structural parasites of trees, generally reducing host tree survival, growth, and reproduction, yet their influences on the outcome of competition among tree species have remained largely unexplored.

    We propose that there are three distinct components to liana–tree interactions:prevalence, defined as the proportion of infested trees;load, defined as the mean liana cover on infested trees; andtolerance, defined as the effect of a given level of infestation on tree population growth rates. We introduce a new metric that integrates these components, the lianaburden, defined as the total effect of lianas on per capita population growth rates given current prevalence, load, and tolerance. Using these metrics, we quantify variation among 33 co‐occurring tropical tree species in liana–tree interactions and its relation with shade‐tolerance.

    The focal tree species vary strongly in liana prevalence, load, tolerance, and burden. Interspecific variation in tolerance is the largest contributor to interspecific variation in burden. Species rankings of per capita population growth rates under current liana infestation levels differ somewhat from rankings under liana‐free conditions, and differ strongly from rankings under uniformly high liana infestation. Thus, lianas alter competitive hierarchies to benefit tree species that are relatively tolerant of and/or resistant to lianas. Among the focal tree species, shade‐tolerance is positively correlated with liana tolerance and prevalence, but largely unrelated to load and burden, meaning shade‐tolerance does not predict which species are competitively disadvantaged by lianas. We describe a variety of mechanisms by which lianas may potentially increase or decrease niche differences among tree species, including interactions with spatial and temporal environmental niche partitioning, and potential differences among tree species in relative vulnerability to different liana species.

    Synthesis. Lianas, like other natural enemies, can in principle alter competitive hierarchies and niche structure of co‐occurring tree species, and our analyses suggest such influences are substantial in our focal tropical tree community and likely many other tree communities as well. Quantifying these effects requires a more comprehensive approach including analyses and modelling of dynamics of liana–tree interactions and their variation with tree and liana species identities.

     
    more » « less
  3. Abstract Background and Aims The success of invasive plants can be attributed to many traits including the ability to adapt to variable environmental conditions. Whether by adaptation, acclimation or phenotypic plasticity, these plants often increase their resource-use efficiency and, consequently, their fitness. The goal of this study was to examine the hydraulic and eco-physiological attributes of sun and shade populations of Pteridium aquilinum, a weedy fern, to determine whether the presence of vessels and other hydraulic attributes affects its success under a variety of light conditions. Methods Hydraulic traits such as cavitation resistance, hydraulic conductivity, photosynthesis and water potential at turgor loss point were measured on fronds from sun and shade populations. Anatomical and structural traits such as conduit diameter and length, stomatal density and vein density were also recorded. Diurnal measures of leaf water potential and stomatal conductance complement these data. Key Results Gas exchange was nearly double in the sun plants, as was water-use efficiency, leaf-specific conductivity, and stomatal and vein density. This was largely achieved by a decrease in leaf area, coupled with higher xylem content. There was no significant difference in petiole cavitation resistance between the sun and shade leaves, nor in xylem-specific conductivity. Hydraulic conduit diameters were nearly equivalent in the two leaf types. Conclusions Shifts in leaf area and xylem content allow P. aquilinum to occupy habitats with full sun, and to adjust its physiology accordingly. High rates of photosynthesis explain in part the success of this fern in disturbed habitats, although no change was observed in intrinsic xylem qualities such as cavitation resistance or conduit length. This suggests that P. aquilinum is constrained by its fundamental body plan, in contrast to seed plants, which show greater capacity for hydraulic adjustment. 
    more » « less
  4. Abstract

    Forest tree communities are largely structured by interactions between phenotypes and their environments. Functional traits have been popularized as providing key insights into plant functional tradeoffs. Similarly, tree crown—stem diameter and tree height—stem diameter allometric relationships are likely to be strongly coordinated with functional trait tradeoff axes. Specifically, species with functional traits indicative of conservative strategies (i.e., dense wood, heavy seeds) should be related to tree architectures that have lower heights and wider crowns for a given stem diameter. For example, shade‐tolerant species in tropical forests are typically characterized as having dense wood, large seeds, and relatively broad crowns at early ontogenetic stages. Here, we focus on 14 dominant dicot tree species in a tropical forest. We utilized hierarchical Bayesian models to characterize species‐specific height and crown size allometric parameters. We sampled from the posterior distributions for these parameters and correlated them with six functional traits. We also characterize the expected height and crown size for a series of reference stem diameters to quantify the relationship between traits and tree architecture across size classes. We find little interspecific variation in allometric slopes, but clear variation in allometric intercepts. Allometeric height intercepts were negatively correlated with wood density and crown size intercepts were positively related to wood density and seed mass and negatively related to leaf percent phosphorus. Thus, interspecific variation in tree architecture is generated by interspecific variation in allometric intercepts and not slopes. These intercepts could be predicted using a handful of functional traits where conservative traits were indicative of trees that are relatively short and have larger crown sizes. This demonstrates a coordination of tropical tree life histories that can be characterized simultaneously with functional traits and tree allometries.

     
    more » « less
  5. Forterre, Yoel (Ed.)
    Abstract Stem growth reflects genetic and phenotypic differences within a tree species. The plant hydraulic system regulates the carbon economy, and therefore variations in growth and wood density. A whole-organism perspective, by partitioning the hydraulic system, is crucial for understanding the physical and physiological processes that coordinately mediate plant growth. The aim of this study was to determine whether the relationships and trade-offs between (i) hydraulic traits and their relative contribution to the whole-plant hydraulic system, (ii) plant water transport, (iii) CO2 assimilation, (iv) plant growth, and (v) wood density are revealed at the interclonal level within a variable population of 10 Pinus radiata (D. Don) clones for these characters. We demonstrated a strong coordination between several plant organs regarding their hydraulic efficiency. Hydraulic efficiency, gas exchange, and plant growth were intimately linked. Small reductions in stem wood density were related to a large increase in sapwood hydraulic efficiency, and thus to plant growth. However, stem growth rate was negatively related to wood density. We discuss insights explaining the relationships and trade-offs of the plant traits examined in this study. These insights provide a better understanding of the existing coordination, likely to be dependent on genetics, between the biophysical structure of wood, plant growth, hydraulic partitioning, and physiological plant functions in P. radiata. 
    more » « less