skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Transformer Hydrogels: A Review
Abstract Hydrogels, which are hydrophilic soft porous networks, are an important class of materials of broad relevance to bioanalytical chemistry, soft‐robotics, drug delivery, and regenerative medicine. Transformer hydrogels are micro‐ and mesostructured hydrogels that display a dramatic transformation of shape, form, or dimension with associated changes in function, due to engineered local variations such as in swelling or stiffness, in response to external controls or environmental stimuli. This review describes principles that can be utilized to fabricate transformer hydrogels such as by layering, patterning, or generating anisotropy, and gradients. Transformer hydrogels are classified based on their responsivity to different stimuli such as temperature, electromagnetic fields, chemicals, and biomolecules. A survey of the current research progress suggests applications of transformer hydrogels in biomimetics, soft robotics, microfluidics, tissue engineering, drug delivery, surgery, and biomedical engineering.  more » « less
Award ID(s):
1830893
PAR ID:
10461539
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Materials Technologies
Volume:
4
Issue:
4
ISSN:
2365-709X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Stimuli responsive hydrogels that can change shape in response to applied external stimuli are appealing for soft robotics, biomedical devices, drug delivery, and actuators. However, existing 3D printed shape morphing materials are non‐biodegradable, which limits their use in biomedical applications. Here, 3D printed protein‐based hydrogels are developed and applied for programmable structural changes under the action of temperature, pH, or an enzyme. Key to the success of this strategy is the use of methacrylated bovine serum albumin (MA–BSA) as a biodegradable building block to Pickering emulsion gels in the presence ofN‐isopropylacrylamide or 2‐dimethylaminoethyl methacrylate. These shear‐thinning gels are ideal for direct ink write (DIW) 3D printing of multi‐layered stimuli‐responsive hydrogels. While poly(N‐isopropylacrylamide) and poly(dimethylaminoethyl methacrylate) introduce temperature and pH‐responsive properties into the printed objects, a unique feature of this strategy is an enzyme‐triggered shape transformation based on the degradation of the bovine serum albumin network. To highlight this technique, protein‐based hydrogels that reversibly change shape based on environmental temperature and pH are fabricated, and irreversibly altered by enzymatic degradation, which demonstrates the complexity that can be introduced into 4D printed systems. 
    more » « less
  2. Abstract Hydrogels with the ability to change shape in response to biochemical stimuli are important for biosensing, smart medicine, drug delivery, and soft robotics. Here, a family of multicomponent DNA polymerization motor gels with different polymer backbones is created, including acrylamide‐co‐bis‐acrylamide (Am‐BIS), poly(ethylene glycol) diacrylate (PEGDA), and gelatin‐methacryloyl (GelMA) that swell extensively in response to specific DNA sequences. A common mechanism, a polymerization motor that induces swelling is driven by a cascade of DNA hairpin insertions into hydrogel crosslinks. These multicomponent hydrogels can be photopatterned into distinct shapes, have a broad range of mechanical properties, including tunable shear moduli between 297 and 3888 Pa and enhanced biocompatibility. Human cells adhere to the GelMA‐DNA gels and remain viable during ≈70% volumetric swelling of the gel scaffold induced by DNA sequences. The results demonstrate the generality of sequential DNA hairpin insertion as a mechanism for inducing shape change in multicomponent hydrogels, suggesting widespread applicability of polymerization motor gels in biomaterials science and engineering. 
    more » « less
  3. Abstract Cell engineering, soft robotics, and wearable electronics often desire soft materials that are easy to deform, self‐heal readily, and can relax stress rapidly. Hydrogels, a type of hydrophilic networks, are such kind of materials that can be made responsive to environmental stimuli. However, conventional hydrogels often suffer from poor stretchability and repairability. Here, hydrogels consisting of boronic ester dynamic covalent bonds in a double network of poly(vinyl alcohol)/boric acid and chitosan are synthesized, which demonstrate extreme stretchability (up to 310 times the original length), instant self‐healing (within 5 s), and reusability and inherent adhesion. Their instant stress relaxation stems from a low activation energy of the boronic ester bond exchange (≤20 kJ mol−1) and contributes to the extreme stretchability and self‐healing behaviors. Various water‐dispersible additives can be readily incorporated in the hydrogels via hand kneading for potential applications such as soft electronics, bio‐signal sensing, and soft artificial joints. 
    more » « less
  4. The development of biomolecular stimuli-responsive hydrogels is important for biomimetic structures, soft robots, tissue engineering, and drug delivery. DNA polymerization gels are a new class of soft materials composed of polymer gel backbones with DNA duplex crosslinks that can be swollen by sequential strand displacement using hairpin-shaped DNA strands. The extensive swelling can be tuned using physical parameters such as salt concentration and biomolecule design. Previously, DNA polymerization gels have been used to create shape-changing gel automata with a large design space and high programmability. Here we systematically investigate how the swelling response of DNA polymerization gels can be tuned by adjusting the design and concentration of DNA crosslinks in the hydrogels or DNA hairpin triggers, and the ionic strength of the solution in which swelling takes place. We also explore the effect hydrogel size and shape have on the swelling response. Tuning these variables can alter the swelling rate and extent across a broad range and provide a quantitative connection between biochemical reactions and macroscopic material behaviour. 
    more » « less
  5. Abstract Stimuli–responsive biomaterials may be used to better control the release of bioactive molecules or cells for applications involving drug delivery and controlled cell release. In this study, we developed a Factor Xa (FXa)‐responsive biomaterial capable of controlled release of pharmaceutical agents and cells from in vitro culture. FXa‐cleavable substrates were formed as hydrogels that degraded in response to FXa enzyme over several hours. Hydrogels were shown to release both heparin and a model protein in response to FXa. Additionally, RGD‐functionalized FXa‐degradable hydrogels were used to culture mesenchymal stromal cells (MSCs), enabling FXa‐mediated cell dissociation from hydrogels in a manner that preserved multicellular structures. Harvesting MSCs using FXa‐mediated dissociation did not influence their differentiation capacity or indoleamine 2,3‐dioxygenase (IDO) activity (a measure of immunomodulatory capacity). In all, this FXa‐degradable hydrogel is a novel responsive biomaterial system that may be used for on‐demand drug delivery, as well as for improving processes for in vitro culture of therapeutic cells. 
    more » « less