We develop a two-stage computational method to assimilate linear viscoelastic material functions (LMFs), viz., stress relaxation modulus, creep compliance, and the complex modulus, by inferring a consensus discrete relaxation spectrum (DRS) that simultaneously fits all three LMFs. In the first stage, the DRS corresponding to the different LMFs is deduced independently, before they are combined heuristically to generate an initial guess for the consensus DRS. In the second stage, this initial guess is refined using nonlinear least squares regression. The effectiveness of this method for data fusion and validation is demonstrated by analyzing experimental data collected on two different polymer melt systems. We also investigate the performance of the method when the timescales probed by the LMFs do not overlap, or are limited to 4–6 decades, as is typically the case for thermorheologically complex materials. To explore these questions, we generate synthetic datasets by obscuring information from one of the experimental datasets. We find that the computational protocol works quite well. As expected, the quality of the inferred DRS is marginally impaired because information is suppressed.
more »
« less
pyReSpect: A Computer Program to Extract Discrete and Continuous Spectra from Stress Relaxation Experiments
Abstract An open‐source software package “pyReSpect” is presented to extract relaxation spectra from stress relaxation experiments. It employs nonlinear Tikhonov regularization to obtain the continuous relaxation spectrum (CRS), and robust new algorithm to automatically determine a discrete relaxation spectrum (DRS) with a parsimonious number of modes. The new algorithm uses the CRS to guess the location of the modes, a nonlinear least squares optimization to fine‐tine the guess, and an information criterion to determine an optimal number of modes. The program is subjected to three validation tests, where data are generated from synthetic spectra, and three additional tests drawn from a variety of macromolecular architectures and sources. On the validation tests, pyReSpect is able to extract the original spectra. In all cases, the DRS follows the shape of the CRS, and offers additional regularization. Overall, pyReSpect is an excellent choice to obtain the DRS when the number and placement of modes is not known in advance.
more »
« less
- Award ID(s):
- 1727870
- PAR ID:
- 10461545
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Macromolecular Theory and Simulations
- Volume:
- 28
- Issue:
- 3
- ISSN:
- 1022-1344
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This work investigates the characteristics of westward-propagating Rossby modes in idealized global general circulation models. Using a nonlinear smoothing algorithm to estimate the background spectrum and an objective method to extract the spectral peaks, the four leading meridional modes can be identified for each of the first three zonal wavenumbers, with frequencies close to the predictions from the Hough modes obtained by linearizing about a state of rest. Variations in peak amplitude for different modes, both within a simulation and across simulations, may be understood under the assumption that the forcing of the modes scales with the background spectrum. Surface friction affects the amplitude and width of the peaks but both remain finite as friction goes to zero, which implies that some other mechanism, arguably nonlinear, must also contribute to the damping of the modes. Although spectral peaks are also observed for the precipitation field with idealized moist physics, there is no evidence of mode enhancement by the convective heating. Subject to the same friction, the amplitude of the peaks are very similar in the dry and moist models when both are normalized by the background spectra.more » « less
-
Significance: Many studies in colorectal cancer (CRC) use murine ectopic tumor models to determine response to treatment. However, these models do not replicate the tumor microenvironment of CRC. Physiological information of treatment response derived via diffuse reflectance spectroscopy (DRS) from murine primary CRC tumors provide a better understanding for the development of new drugs and dosing strategies in CRC. Aim: Tumor response to chemotherapy in a primary CRC model was quantified via DRS to extract total hemoglobin content (tHb), oxygen saturation (StO2), oxyhemoglobin, and deoxyhemoglobin in tissue. Approach: A multimodal DRS and imaging probe (0.78 mm outside diameter) was designed and validated to acquire diffuse spectra longitudinally—via endoscopic guidance—in developing colon tumors under 5-fluoruracil (5-FU) maximum-tolerated (MTD) and metronomic regimens. A filtering algorithm was developed to compensate for positional uncertainty in DRS measurements Results: A maximum increase in StO2 was observed in both MTD and metronomic chemotherapy-treated murine primary CRC tumors at week 4 of neoadjuvant chemotherapy, with 21 ± 6 % and 17 ± 6 % fold changes, respectively. No significant changes were observed in tHb. Conclusion: Our study demonstrates the feasibility of DRS to quantify response to treatment in primary CRC models.more » « less
-
Large-scale seismic structural tests are crucial to validating both structural design methodologies and the effectiveness of seismic isolation devices. However, considering the significant costs of such tests, it is essential to leverage data from completed tests by taking advantage of numerical models of the tested structures, updated using data collected from the experiments, to complete additional studies that may be difficult, unsafe or impossible to physically test. However, updating complex numerical models poses its own challenges. The first contribution of this paper is to develop a multi-stage model updating method suitable for high-order models of base-isolated structures, which is motivated and evaluated through modeling and model updating of a full-scale four-story base-isolated reinforced-concrete frame building that was tested in 2013 at the NIED E-Defense laboratory in Japan. In most studies involving model updating, all to-be-updated parameters are typically updated simultaneously; however, given the observation that the superstructure in this study predominantly moves as a rigid body in low-frequency modes and the isolation layer plays a minor role in all other modes, this study proposes updating parameters in stages: first, the linear superstructure parameters are updated so that its natural frequencies and mode shapes match those identified via a subspace system identification of the experimental building responses to low-level random excitations; then, the isolation-layer device linear parameters are updated so that the natural frequencies, damping ratios and mode shapes of the three isolation modes match. These two stages break a large-scale linear model updating problem into two smaller problems, thereby reducing the search space for the to-be-updated parameters, which generally reduces computational costs regardless of what optimization algorithm is adopted. Due to the limited instrumentation, the identified modes constitute only a subset of all the modes; to match each identified mode with a FEM mode, a procedure is proposed to compare each identified mode with a candidate set of FEM modes and to select the best match, which is a second contribution. Further, nonlinear isolation-layer device models are proposed, updated and validated with experimental data. Finally, combining the isolation-layer devices' nonlinear models with the updated superstructure linear FEM, the final result is a data-calibrated nonlinear numerical model that will be used for further studies of controllable damping and validation of new design methodologies, and is being made available for use by the research community, alleviating the dearth of experimentally-calibrated numerical models of full-scale base-isolated buildings with lateral-torsional coupling effects.more » « less
-
We report an algorithm to automatically generate compact multimode vibrational bases for the Köppel-Domcke-Cederbaum (KDC) vibronic coupling wave function used in spectral simulations of moderate-sized molecules. As a full quantum method, the size of the vibronic expansion grows exponentially with respect to the number of vibrational modes, necessitating compact bases for moderate-sized systems. The problem of generating such a basis consists of two parts, one is the choice of vibrational normal modes, the other is the number of phonons allowed in each mode. A previously developed final-state-biased technique addresses the former part and this work focuses on the latter part: proposing an algorithm for generating an optimal phonon distribution. By virtue of this phonon distribution, compact and affordable bases can be automatically generated for systems with on the order of 15 atoms. Our algorithm is applied to determine the nonadiabatic photoelectron spectrum of cyclopentoxide in the full 39 internal modes.more » « less
An official website of the United States government
