skip to main content


Title: A biopolymer‐based 3D printable hydrogel for toxic metal adsorption from water
Abstract

Herein, we describe a 3D printable hydrogel that is capable of removing toxic metal pollutants from aqueous solution. To achieve this, shear‐thinning hydrogels were prepared by blending chitosan with diacrylated Pluronic F‐127 which allows for UV curing after printing. Several hydrogel compositions were tested for their ability to absorb common metal pollutants such as lead, copper, cadmium and mercury, as well as for their printability. These hydrogels displayed excellent metal adsorption with some examples capable of up to 95% metal removal within 30 min. We show that 3D printed hydrogel structures that would be difficult to fabricate by conventional manufacturing methods can adsorb metal ions significantly faster than solid objects, owing to their higher accessible surface areas. © 2019 Society of Chemical Industry

 
more » « less
Award ID(s):
1654405
NSF-PAR ID:
10461694
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Polymer International
Volume:
68
Issue:
5
ISSN:
0959-8103
Page Range / eLocation ID:
p. 964-971
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Conductive hydrogels are attractive to mimic electrophysiological environments of biological tissues and toward therapeutic applications. Injectable and conductive hydrogels are of particular interest for applications in 3D printing or for direct injection into tissues; however, current approaches to add conductivity to hydrogels are insufficient, leading to poor gelation, brittle properties, or insufficient conductivity. Here, an approach is developed using the jamming of microgels to form injectable granular hydrogels, where i) hydrogel microparticles (i.e., microgels) are formed with water‐in‐oil emulsions on microfluidics, ii) microgels are modified via an in situ metal reduction process, and iii) the microgels are jammed into a solid, permitting easy extrusion from a syringe. Due to the presence of metal nanoparticles at the jammed interface with high surface area in this unique design, the granular hydrogels have greater conductivity than non‐particle (i.e., bulk) hydrogels treated similarly or granular hydrogels either without metal nanoparticles or containing encapsulated nanoparticles. The conductivity of the granular hydrogels is easily modified through mixing conductive and non‐conductive microgels during fabrication and they can be applied to the 3D printing of lattices and to bridge muscle defects. The versatility of this conductive granular hydrogel will permit numerous applications where conductive materials are needed.

     
    more » « less
  2. Abstract

    Flexible sensors with accurate detection of environmental stimuli (e.g., humidity and chemical substances) have drawn increasing research interests in biomedical engineering and environmental science. However, most work is focused on isotropic sensing of liquid occurrence due to the limitation of material development, sensor design, and fabrication capability. 3D printing is used to build multifunctional flexible liquid sensors with multimaterials enabling anisotropic detection of microliquid droplets, and described herein. Electrical conductive composite hydrogels capable of detecting chemical liquid are developed with poly (ethylene diacrylate) (PEGDA) and multiwalled carbon nanotube (MWCNT). Due to the absorption of the liquid droplet and related swelling behavior, the resistance of PEGDA/MWCNT composite hydrogel increases dramatically, while the resistance of pure PEGDA hydrogel decreases significantly. Based on the two composite hydrogels and the related 3D printing method, a mesh‐shaped liquid sensor that can effectively identify the position and volume of liquid leakage in a short time is developed. Furthermore, a three‐layered liquid sensor to enable bidirectional monitor and detection of the liquid leakage in two different sides is demonstrated. The 3D‐printed liquid sensor offers a distinctive perspective on the potential applications in various fields for detection of liquid leakage in accurate position and direction.

     
    more » « less
  3. Jabbari, Esmaiel (Ed.)
    This study presents novel biocompatible Polydimethylsiloxane (PDMS)-based micromechanical tweezers (μTweezers) capable of the stiffness characterization and manipulation of hydrogel-based organoids. The system showed great potential for complementing established mechanical characterization methods such as Atomic Force Microscopy (AFM), parallel plate compression (PPC), and nanoindentation, while significantly reducing the volume of valuable hydrogels used for testing. We achieved a volume reduction of ~0.22 μl/sample using the μTweezers vs. ~157 μl/sample using the PPC, while targeting high-throughput measurement of widely adopted micro-mesoscale (a few hundred μm-1500 μm) 3D cell cultures. The μTweezers applied and measured nano-millinewton forces through cantilever’ deflection with high linearity and tunability for different applications; the assembly is compatible with typical inverted optical microscopes and fit on standard tissue culture Petri dishes, allowing mechanical compression characterization of arrayed 3D hydrogel-based organoids in a high throughput manner. The average achievable output per group was 40 tests per hour, where 20 organoids and 20 reference images in one 35 mm petri dish were tested, illustrating efficient productivity to match the increasing demand on 3D organoids’ applications. The changes in stiffness of collagen I hydrogel organoids in four conditions were measured, with ovarian cancer cells (SKOV3) or without (control). The Young’s modulus of the control group (Control—day 0, E = 407± 146, n = 4) measured by PPC was used as a reference modulus, where the relative elastic compressive modulus of the other groups based on the stiffness measurements was also calculated (control-day 0, E = 407 Pa), (SKOV3-day 0, E = 318 Pa), (control-day 5, E = 528 Pa), and (SKOV3-day 5, E = 376 Pa). The SKOV3-embedded hydrogel-based organoids had more shrinkage and lowered moduli on day 0 and day 5 than controls, consistently, while SKOV3 embedded organoids increased in stiffness in a similar trend to the collagen I control from day 0 to day 5. The proposed method can contribute to the biomedical, biochemical, and regenerative engineering fields, where bulk mechanical characterization is of interest. The μTweezers will also provide attractive design and application concepts to soft membrane-micro 3D robotics, sensors, and actuators. 
    more » « less
  4. Abstract

    Hydrogels are the focus of extensive research due to their potential use in fields including biomedical, pharmaceutical, biosensors, and cosmetics. However, the general weak mechanical properties of hydrogels limit their utility. Here, pristine silk fibroin (SF) hydrogels with excellent mechanical properties are generated via a binary‐solvent‐induced conformation transition (BSICT) strategy. In this method, the conformational transition of SF is regulated by moderate binary solvent diffusion and SF/solvent interactions. β‐sheet formation serves as the physical crosslinks that connect disparate protein chains to form continuous 3D hydrogel networks, avoiding complex chemical and/or physical treatments. The Young's modulus of these new BSICT–SF hydrogels can reach up to 6.5 ± 0.2 MPa, tens to hundreds of times higher than that of conventional hydrogels (0.01–0.1 MPa). These new materials fill the “empty soft materials' space” in the elastic modulus/strain Ashby plot. More remarkably, the BSICT–SF hydrogels can be processed into different constructions through different polymer and/or metal‐based processing techniques, such as molding, laser cutting, and machining. Thus, these new hydrogel systems exhibit potential utility in many biomedical and engineering fields.

     
    more » « less
  5. Abstract

    3D printing has been intensively explored to fabricate customized structures of responsive materials including hydrogels, liquid‐crystal elastomers, shape‐memory polymers, and aqueous droplets. Herein, a new method and material system capable of 3D‐printing hydrogel inks with programed bacterial cells as responsive components into large‐scale (3 cm), high‐resolution (30 μm) living materials, where the cells can communicate and process signals in a programmable manner, are reported. The design of 3D‐printed living materials is guided by quantitative models that account for the responses of programed cells in printed microstructures of hydrogels. Novel living devices are further demonstrated, enabled by 3D printing of programed cells, including logic gates, spatiotemporally responsive patterning, and wearable devices.

     
    more » « less