skip to main content

Title: Challenges in double-beam laser interferometry measurements of fully released piezoelectric films
When utilizing double-beam laser interferometry to assess the piezoelectric coefficient of a film on a substrate, probing both top and bottom sample surfaces is expected to correct the erroneous bending contribution by canceling the additional path length from the sample height change. However, when the bending deformation becomes extensive and uncontrolled, as in the case of membranes or fully released piezoelectric films, the double-beam setup can no longer account for the artifacts, thus resulting in inflated film displacement data and implausibly large piezoelectric coefficient values. This work serves to identify these challenges by demonstrating d33,f measurements of fully released PZT films using a commercial double-beam laser interferometer. For a 1 μm thick randomly oriented PZT film on a 10 μm thick polyimide substrate, a large apparent d33,f of 9500 pm/V was measured. The source of error was presumably a distorted interference pattern due to the erroneous phase shift of the measurement laser beam caused by extensive deformation of the released sample structure. This effect has unfortunately been mistaken as enhanced piezoelectric responses by some reports in the literature. Finite element models demonstrate that bending, laser beam alignment, and the offset between the support structure and the electrode under test have a strong influence on the apparent film d33,f.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Applied Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The receive sensitivity of lead zirconate titanate (PZT) piezoelectric micromachined ultrasound transducers (PMUTs) was improved by applying a DC bias during operation. The PMUT receive sensitivity is governed by the voltage piezoelectric coefficient, h31,f. With applied DC biases (up to 15 V) on a 2 μm PbZr0.52Ti0.48O3 film, e31,f increased 1.6 times, permittivity decreased by a factor of 0.6, and the voltage coefficient increased by ~2.5 times. For released PMUT devices, the ultrasound receive sensitivity improved by 2.5 times and the photoacoustic signal improved 1.9 times with 15 V applied DC bias. B-mode photoacoustic imaging experiments showed that with DC bias, the PMUT received clearer photoacoustic signals from pencil leads at 4.3 cm, compared to 3.7 cm without DC bias. 
    more » « less
  2. Lead zirconate titanate (PZT) films with high Nb concentrations (6–13 mol%) were grown by chemical solution deposition. In concentrations up to 8 mol% Nb, the films self-compensate the stoichiometry; single phase films were grown from precursor solutions with 10 mol% PbO excess. Higher Nb concentrations induced multi-phase films unless the amount of excess PbO in the precursor solution was reduced. Phase pure perovskite films were grown with 13 mol% excess Nb with the addition of 6 mol% PbO. Charge compensation was achieved by creating lead vacancies when decreasing excess PbO level; using Kroger-Vink notation, NbTi• are ionically compensated by VPb″ to maintain charge neutrality in heavily Nb-doped PZT films. With Nb doping, films showed suppressed {100} orientation, the Curie temperature decreased, and the maximum in the relative permittivity at the phase transition broadened. The dielectric and piezoelectric properties were dramatically degraded due to increased quantity of the non-polar pyrochlore phase in multi-phase films; εr reduced from 1360 ± 8 to 940 ± 6, and the remanent d33,f value decreased from 112 to 42 pm/V when increasing the Nb concentration from 6 to 13 mol%. Property deterioration was corrected by decreasing the PbO level to 6 mol%; phase pure perovskite films were attained. εr and the remanent d33,f increased to 1330 ± 9 and 106 ± 4 pm/V, respectively. There was no discernable difference in the level of self-imprint in phase pure PZT films with Nb doping. However, the magnitude of the internal field after thermal poling at 150 °C increased significantly; the level of imprint was 30 kV/cm and 11.5 kV/cm in phase pure 6 mol% and 13 mol% Nb-doped films, respectively. The absence of mobile VO••, coupled with the immobile VPb″ in 13 mol% Nb-doped PZT films, leads to lower internal field formation upon thermal poling. For 6 mol% Nb-doped PZT films, the internal field formation was primarily governed by (1) the alignment of (VPb″−VO•• )x and (2) the injection and subsequent electron trapping by Ti4+. For 13 mol% Nb-doped PZT films, hole migration between VPb″ controlled internal field formation upon thermal poling. 
    more » « less
  3. Lead zirconate titanate (PZT) thin films offer advantages in microelectromechanical systems (MEMSs) including large motion, lower drive voltage, and high energy densities. Depending on the application, different substrates are sometimes required. Self-heating occurs in the PZT MEMS due to the energy loss from domain wall motion, which can degrade the device performance and reliability. In this work, the self-heating of PZT thin films on Si and glass and a film released from a substrate were investigated to understand the effect of substrates on the device temperature rise. Nano-particle assisted Raman thermometry was employed to quantify the operational temperature rise of these PZT actuators. The results were validated using a finite element thermal model, where the volumetric heat generation was experimentally determined from the hysteresis loss. While the volumetric heat generation of the PZT films on different substrates was similar, the PZT films on the Si substrate showed a minimal temperature rise due to the effective heat dissipation through the high thermal conductivity substrate. The temperature rise on the released structure is 6.8× higher than that on the glass substrates due to the absence of vertical heat dissipation. The experimental and modeling results show that the thin layer of residual Si remaining after etching plays a crucial role in mitigating the effect of device self-heating. The outcomes of this study suggest that high thermal conductivity passive elastic layers can be used as an effective thermal management solution for PZT-based MEMS actuators.

    more » « less
  4. Lead zirconate titanate (PZT) is widely used in energy harvesting because of its excellent material properties. However, as the material contains lead, there are significant environmental concerns with its production and use. Flexoelectricity refers to the coupling between strain gradient and electric polarization that exists, in principle, in all dielectric materials and would allow for energy harvesting without using piezoelectric materials. However, the effect is very weak in most materials. Promisingly, it has recently been shown that space charge polarized materials (i.e., semiconducting materials with insulating barrier layers) can exhibit enhanced flexoelectricity. This space charge induced flexoelectric effect opens up the possibility of a non-toxic replacement for PZT in energy harvesting applications. In this paper we investigate the use of doped silicon with hafnium oxide insulating layers as flexoelectric transducers that could replace PZT in many applications including energy harvesting. Specifically, we experimentally demonstrate flexoelectricity in a bending beam and show an effective flexoelectric coefficient of 4.9 uC/F. Finally, we develop and demonstrate a finite element model for flexoelectricity. 
    more » « less
  5. Frequency-domain probe beam deflection (FD-PBD) is an experimental technique for measuring thermal properties that combines heating by a modulated pump laser and measurement of the temperature field via thermoelastic displacement of the sample surface. In the conventional implementation of FD-PBD, the data are mostly sensitive to the in-plane thermal diffusivity. We describe an extension of FD-PBD that introduces sensitivity to through-plane thermal conductance by immersing the sample in a dielectric liquid and measuring the beam deflection created by the temperature field of the liquid. We demonstrate the accuracy of the method by measuring (1) the thermal conductivity of a 310 nm thick thermally grown oxide on Si, (2) the thermal boundary conductance of bonded interface between a 3C-SiC film and a single crystal diamond substrate, and (3) the thermal conductivities of several bulk materials. We map the thermal boundary conductance of a 3C-SiC/diamond interface with a precision of 1% using a lock-in time constant of 3 ms and dwell time of 15 ms. The spatial resolution and maximum probing depth are proportional to the radius of the focused laser beams and can be varied over the range of 1–20 μm and 4–80 μm, respectively, by varying the 1/e2 intensity radius of the focused laser beams from 2 to 40 μm. FD-PBD with liquid immersion thus enables fast mapping of spatial variations in thermal boundary conductance of deeply buried interfaces.

    more » « less