skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Direct Measurement of Inverse Piezoelectric Effects in Thin Films Using Laser Doppler Vibrometry
Further miniaturization of electronic devices necessitates the introduction of new materials, including piezoelectric thin films, that exhibit electromechanical functionalities without significant degradation in response due to substrate-induced clamping. To identify material systems with superior piezoelectric properties as thin films, simplified and quantitative electromechanical characterization techniques are required. Here, single-beam, laser Doppler vibrometry is used to detect ac electric-field-induced surface displacement in the frequency range 1–100 kHz with low error (around 6% at 10 kHz) and resolution of 0.0003 nm. The technique is used to quantify both electrostriction and piezoelectric responses (surface displacement values <0.05 nm) of various thin films. Requirements for sample geometry and device structures are established and measurement accuracy and resolution are validated against measurements from the literature via synchrotron-based diffraction measurements. A general methodology to measure and extract the piezoelectric coefficients for thin-film samples using finite-element modeling is presented and applied to determine the d33 coefficient and visualize the response in substrate-clamped 50–400-nm-thick PbZr0.52Ti0.48O3 films, especially as compared to bulk versions with the same sample geometry.  more » « less
Award ID(s):
2102895
PAR ID:
10515012
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Applied
Volume:
20
Issue:
1
ISSN:
2331-7019
Page Range / eLocation ID:
014017
Subject(s) / Keyword(s):
piezoelectric electromechanical ferroelectric relaxor laser Doppler vibrometry
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The pursuit of smaller, energy‐efficient devices drives the exploration of electromechanically active thin films (<1 µm) to enable micro‐ and nano‐electromechanical systems. While the electromechanical response of such films is limited by substrate‐induced mechanical clamping, large electromechanical responses in antiferroelectric and multilayer thin‐film heterostructures have garnered interest. Here, multilayer thin‐film heterostructures based on antiferroelectric PbHfO3and ferroelectric PbHf1‐xTixO3overcome substrate clamping to produce electromechanical strains >4.5%. By varying the chemistry of the PbHf1‐xTixO3layer (x = 0.3‐0.6) it is possible to alter the threshold field for the antiferroelectric‐to‐ferroelectric phase transition, reducing the field required to induce the onset of large electromechanical response. Furthermore, varying the interface density (from 0.008 to 3.1 nm−1) enhances the electrical‐breakdown field by >450%. Attaining the electromechanical strains does not necessitate creating a new material with unprecedented piezoelectric coefficients, but developing heterostructures capable of withstanding large fields, thus addressing traditional limitations of thin‐film piezoelectrics. 
    more » « less
  2. Abstract Understanding surface stability becomes critical as 2D materials like SnSe are developed for piezoelectric and optical applications. SnSe thin films deposited by molecular beam epitaxy showed no structural changes after a two-year exposure to atmosphere, as confirmed by X-ray diffraction and Raman spectroscopy. X-ray photoelectron spectroscopy and reflectivity show a stable 3.5 nm surface oxide layer, indicating a self-arresting oxidative process. Resistivity measurements show an electrical response dominated by SnSe post-exposure. This work shows that SnSe films can be used in ambient conditions with minimal risk of long-term degradation, which is critical for the development of piezoelectric or photovoltaic devices. Graphical Abstract 
    more » « less
  3. When utilizing double-beam laser interferometry to assess the piezoelectric coefficient of a film on a substrate, probing both top and bottom sample surfaces is expected to correct the erroneous bending contribution by canceling the additional path length from the sample height change. However, when the bending deformation becomes extensive and uncontrolled, as in the case of membranes or fully released piezoelectric films, the double-beam setup can no longer account for the artifacts, thus resulting in inflated film displacement data and implausibly large piezoelectric coefficient values. This work serves to identify these challenges by demonstrating d33,f measurements of fully released PZT films using a commercial double-beam laser interferometer. For a 1 μm thick randomly oriented PZT film on a 10 μm thick polyimide substrate, a large apparent d33,f of 9500 pm/V was measured. The source of error was presumably a distorted interference pattern due to the erroneous phase shift of the measurement laser beam caused by extensive deformation of the released sample structure. This effect has unfortunately been mistaken as enhanced piezoelectric responses by some reports in the literature. Finite element models demonstrate that bending, laser beam alignment, and the offset between the support structure and the electrode under test have a strong influence on the apparent film d33,f. 
    more » « less
  4. A series of different high κ dielectrics such as HfO2, ZrO2, and Al2O3 thin films were studied as an alternative material for the possible replacement of traditional SiO2. These large areas, as well as conformal dielectrics thin films, were grown by the atomic layer deposition technique on a p-type silicon substrate at two different deposition temperatures (150 and 250 °C). Atomic force microscopic study reveals that the surface of the films is very smooth with a measured rms surface roughness value of less than 0.4 nm in some films. After the deposition of the high κ layer, a top metal electrode was deposited onto it to fabricate metal oxide semiconductor capacitor (MOSCAP) structures. The I–V curve reveals that the sample growth at high temperatures exhibits a high resistance value and lower leakage current densities. Frequency-dependent (100 kHz to 1 MHz) C–V characteristics of the MOSCAPs were studied steadily. Furthermore, we have prepared a metal oxide semiconductor field-effect transistor device with Al-doped ZnO as a channel material, and the electrical characteristic of the device was studied. The effect of growth temperature on the structure, surface morphology, crystallinity, capacitance, and dielectric properties of the high κ dielectrics was thoroughly analyzed through several measurement techniques, such as XRD, atomic force microscopy, semiconductor parameter analysis, and ultraviolet-visible spectroscopy. 
    more » « less
  5. null (Ed.)
    High-performance piezoelectric materials are critical components for electromechanical sensors and actuators. For more than 60 years, the main strategy for obtaining large piezoelectric response has been to construct multiphase boundaries, where nanoscale domains with local structural and polar heterogeneity are formed, by tuning complex chemical compositions. We used a different strategy to emulate such local heterogeneity by forming nanopillar regions in perovskite oxide thin films. We obtained a giant effective piezoelectric coefficient d 33 , f * of ~1098 picometers per volt with a high Curie temperature of ~450°C. Our lead-free composition of sodium-deficient sodium niobate contains only three elements (Na, Nb, and O). The formation of local heterogeneity with nanopillars in the perovskite structure could be the basis for a general approach to designing and optimizing various functional materials. 
    more » « less