Understanding human perceptions of robot performance is crucial for designing socially intelligent robots that can adapt to human expectations. Current approaches often rely on surveys, which can disrupt ongoing human–robot interactions. As an alternative, we explore predicting people’s perceptions of robot performance using non-verbal behavioral cues and machine learning techniques. We contribute the SEAN TOGETHER Dataset consisting of observations of an interaction between a person and a mobile robot in Virtual Reality, together with perceptions of robot performance provided by users on a 5-point scale. We then analyze how well humans and supervised learning techniques can predict perceived robot performance based on different observation types (like facial expression and spatial behavior features). Our results suggest that facial expressions alone provide useful information, but in the navigation scenarios that we considered, reasoning about spatial features in context is critical for the prediction task. Also, supervised learning techniques outperformed humans’ predictions in most cases. Further, when predicting robot performance as a binary classification task on unseen users’ data, the F1-Score of machine learning models more than doubled that of predictions on a 5-point scale. This suggested good generalization capabilities, particularly in identifying performance directionality over exact ratings. Based on these findings, we conducted a real-world demonstration where a mobile robot uses a machine learning model to predict how a human who follows it perceives it. Finally, we discuss the implications of our results for implementing these supervised learning models in real-world navigation. Our work paves the path to automatically enhancing robot behavior based on observations of users and inferences about their perceptions of a robot.
more »
« less
Self-Annotation Methods for Aligning Implicit and Explicit Human Feedback in Human-Robot Interaction
Recent research in robot learning suggests that implicit human feedback is a low-cost approach to improving robot behavior without the typical teaching burden on users. Because implicit feedback can be difficult to interpret, though, we study different methods to collect fine-grained labels from users about robot performance across multiple dimensions, which can then serve to map implicit human feedback to performance values. In particular, we focused on understanding the effects of annotation order and frequency on human perceptions of the self-annotation process and the usefulness of the labels for creating data-driven models to reason about implicit feedback. Our results demonstrate that different annotation methods can influence perceived memory burden, annotation difficulty, and overall annotation time. Based on our findings, we conclude with recommendations to create future implicit feedback datasets in Human-Robot Interaction.
more »
« less
- PAR ID:
- 10461835
- Date Published:
- Journal Name:
- HRI '23: Proceedings of the 2023 ACM/IEEE International Conference on Human-Robot Interaction
- Page Range / eLocation ID:
- 398 to 407
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent work in Human-Robot Interaction (HRI) has shown that robots can leverage implicit communicative signals from users to understand how they are being perceived during interactions. For example, these signals can be gaze patterns, facial expressions, or body motions that reflect internal human states. To facilitate future research in this direction, we contribute the REACT database, a collection of two datasets of human-robot interactions that display users’ natural reactions to robots during a collaborative game and a photography scenario. Further, we analyze the datasets to show that interaction history is an important factor that can influence human reactions to robots. As a result, we believe that future models for interpreting implicit feedback in HRI should explicitly account for this history. REACT opens up doors to this possibility in the future.more » « less
-
A prerequisite for social coordination is bidirectional communication between teammates, each playing two roles simultaneously: as receptive listeners and expressive speakers. For robots working with humans in complex situations with multiple goals that differ in importance, failure to fulfill the expectation of either role could undermine group performance due to misalignment of values between humans and robots. Specifically, a robot needs to serve as an effective listener to infer human users’ intents from instructions and feedback and as an expressive speaker to explain its decision processes to users. Here, we investigate how to foster effective bidirectional human-robot communications in the context of value alignment—collaborative robots and users form an aligned understanding of the importance of possible task goals. We propose an explainable artificial intelligence (XAI) system in which a group of robots predicts users’ values by taking in situ feedback into consideration while communicating their decision processes to users through explanations. To learn from human feedback, our XAI system integrates a cooperative communication model for inferring human values associated with multiple desirable goals. To be interpretable to humans, the system simulates human mental dynamics and predicts optimal explanations using graphical models. We conducted psychological experiments to examine the core components of the proposed computational framework. Our results show that real-time human-robot mutual understanding in complex cooperative tasks is achievable with a learning model based on bidirectional communication. We believe that this interaction framework can shed light on bidirectional value alignment in communicative XAI systems and, more broadly, in future human-machine teaming systems.more » « less
-
An overarching goal of Artificial Intelligence (AI) is creating autonomous, social agents that help people. Two important challenges, though, are that different people prefer different assistance from agents and that preferences can change over time. Thus, helping behaviors should be tailored to how an individual feels during the interaction. We hypothesize that human nonverbal behavior can give clues about users' preferences for an agent's helping behaviors, augmenting an agent's ability to computationally predict such preferences with machine learning models. To investigate our hypothesis, we collected data from 194 participants via an online survey in which participants were recorded while playing a multiplayer game. We evaluated whether the inclusion of nonverbal human signals, as well as additional context (e.g., via game or personality information), led to improved prediction of user preferences between agent behaviors compared to explicitly provided survey responses. Our results suggest that nonverbal communication -- a common type of human implicit feedback -- can aid in understanding how people want computational agents to interact with them.more » « less
-
Our goal is for people to be physically com- fortable when taking objects from robots. This puts a burden on the robot to hand over the object in such a way that a person can easily reach it, without needing to strain or twist their arm – a way that is conducive to ergonomic human grasping configurations. To achieve this, the robot needs to understand what makes a configuration more or less ergonomic to the person, i.e. their ergonomic cost function. In this work, we formulate learning a person’s ergonomic cost as an online estimation problem. The robot can implicitly make queries to the person by handing them objects in different configurations, and gets observations in response about the way they choose to take the object. We compare the performance of both passive and active approaches for solving this problem in simulation, as well as in an in-person user study.more » « less