skip to main content


Title: O-RAN Perspective on Industrial Internet of Things: A SWOT Analysis
Internet of Things (IoT) is becoming increasingly popular due to its ability to connect machines and enable an ecosystem for new applications and use cases. One such use case is industrial loT (1IoT) that refers to the application of loT in industrial settings especially engaging instrumentation and control of sensors and machines with Cloud technologies. Industries are counting on the fifth generation (5G) of mobile communications to provide seamless, ubiquitous and flexible connectivity among machines, people and sensors. The open radio access network (O-RAN) architecture adds additional interfaces and RAN intelligent controllers that can be leveraged to meet the IIoT service requirements. In this paper, we examine the connectivity requirements for IIoT that are dominated by two industrial applications: control and monitoring. We present the strength, weakness, opportunity, and threat (SWOT) analysis of O-RAN for IIoT and provide a use case example which illustrates how O-RAN can support diverse and changing IIoT network services. We conclude that the flexibility of the O-RAN architecture, which supports the latest cellular network standards and services, provides a path forward for next generation IIoT network design, deployment, customization, and maintenance. It offers more control but still lacks products-hardware and software-that are exhaustively tested in production like environments.  more » « less
Award ID(s):
2120442
NSF-PAR ID:
10461857
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2023 IEEE International Conference on Industrial Technology (ICIT)
Page Range / eLocation ID:
1 to 6
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Internet of Things (IoT) is a vast collection of interconnected sensors, devices, and services that share data and information over the Internet with the objective of leveraging multiple information sources to optimize related systems. The technologies associated with the IoT have significantly improved the quality of many existing applications by reducing costs, improving functionality, increasing access to resources, and enhancing automation. The adoption of IoT by industries has led to the next industrial revolution: Industry 4.0. The rise of the Industrial IoT (IIoT) promises to enhance factory management, process optimization, worker safety, and more. However, the rollout of the IIoT is not without significant issues, and many of these act as major barriers that prevent fully achieving the vision of Industry 4.0. One major area of concern is the security and privacy of the massive datasets that are captured and stored, which may leak information about intellectual property, trade secrets, and other competitive knowledge. As a way forward toward solving security and privacy concerns, we aim in this paper to identify common input-output (I/O) design patterns that exist in applications of the IIoT. These design patterns enable constructing an abstract model representation of data flow semantics used by such applications, and therefore better understand how to secure the information related to IIoT operations. In this paper, we describe communication protocols and identify common I/O design patterns for IIoT applications with an emphasis on data flow in edge devices, which, in the industrial control system (ICS) setting, are most often involved in process control or monitoring. 
    more » « less
  2. The next generation of Industrial Internet-of-Things (IIoT) systems will require wireless solutions to connect sensors, actuators, and controllers as part of feedback-control loops over real-time flows. A key challenge in such networks is to provide predictable performance and adaptability to variations in link quality. We address this challenge by developing Receiver Oriented Policies (RECORP), which leverages the stability of IIoT workloads to build a solution that combines offline policy synthesis and run-time adaptation. Compared to schedules that service a single flow in a slot, RECORP policies share slots among multiple flows by assigning a coordinator and a set of candidate flows in the same slot. At run-time, the coordinator will dynamically execute one of the flows depending on what flows the coordinator has already received. The net effect of this strategy is that a node can dynamically repurpose the retransmissions remaining after receiving the data of an incoming flow to service other incoming flows opportunistically. Therefore, the flows that are executed in a slot can be adapted in response to the variable link conditions observed at run-time. Furthermore, RECORP also provides predictable performance: a policy meets the end-to-end reliability and deadline constraints of flows given probabilistic link qualities. When RECORP policies and schedules are configured to meet the same end-to-end reliability target of 99%, larger-scale multihop simulations show that across typical IIoT workloads, policies provided a median improvement of 1.63 to 2.44 times in real-time capacity as well as a median reduction of 1.45 to 2.43 times in worst-case latency. 
    more » « less
  3. The rapid development of three-dimensional (3D) acquisition technology based on 3D sensors provides a large volume of data, which are often represented in the form of point clouds. Point cloud representation can preserve the original geometric information along with associated attributes in a 3D space. Therefore, it has been widely adopted in many scene-understanding-related applications such as virtual reality (VR) and autonomous driving. However, the massive amount of point cloud data aggregated from distributed 3D sensors also poses challenges for secure data collection, management, storage, and sharing. Thanks to the characteristics of decentralization and security, Blockchain has great potential to improve point cloud services and enhance security and privacy preservation. Inspired by the rationales behind the software-defined network (SDN) technology, this paper envisions SAUSA, a Blockchain-based authentication network that is capable of recording, tracking, and auditing the access, usage, and storage of 3D point cloud datasets in their life-cycle in a decentralized manner. SAUSA adopts an SDN-inspired point cloud service architecture, which allows for efficient data processing and delivery to satisfy diverse quality-of-service (QoS) requirements. A Blockchain-based authentication framework is proposed to ensure security and privacy preservation in point cloud data acquisition, storage, and analytics. Leveraging smart contracts for digitizing access control policies and point cloud data on the Blockchain, data owners have full control of their 3D sensors and point clouds. In addition, anyone can verify the authenticity and integrity of point clouds in use without relying on a third party. Moreover, SAUSA integrates a decentralized storage platform to store encrypted point clouds while recording references of raw data on the distributed ledger. Such a hybrid on-chain and off-chain storage strategy not only improves robustness and availability, but also ensures privacy preservation for sensitive information in point cloud applications. A proof-of-concept prototype is implemented and tested on a physical network. The experimental evaluation validates the feasibility and effectiveness of the proposed SAUSA solution. 
    more » « less
  4. null (Ed.)
    The past decade has witnessed the rapid development of real-time wireless technologies and their wide adoption in various industrial Internet-of-Things (IIoT) applications. Among those wireless technologies, 6TiSCH is a promising candidate as the de facto standard due to its nice feature of gluing a real-time link-layer standard (802.15.4e, for offering deterministic communication performance) together with an IP-enabled upper-layer stack (for seamlessly supporting Internet services). 6TiSCH's built-in random slot selection scheduling algorithm, however, often leads to large and unbounded transmission latency, thus can hardly meet the real-time requirements of IIoT applications. This paper proposes an adaptive partition based scheduling framework, APaS, for 6TiSCH networks. APaS introduces the concept of resource partitioning into 6TiSCH network management. Instead of allocating network resources to individual devices, APaS partitions and assigns network resources to different groups of devices based on their layers in the network so as to guarantee that the transmission latency of any end-toend flow is within one slotframe length. APaS also employs a novel online partition adjustment method to further improve its adaptability to dynamic network topology changes. The effectiveness of APaS is validated through both simulation and testbed experiments on a 122-node multi-hop 6TiSCH network. 
    more » « less
  5. null (Ed.)
    Optical network technology is one of the leading candidates for meeting the required backhaul transport layer latency and capacity requirements of 5G services. In addition, its physical layer programmability supports the execution of advanced methods that can improve 5G service reliability and SLA compliance in the face of equipment failure. While a number of such methods is addressed in the literature, including Virtual Network Function (VNF) fault-tolerant methods, a full proof of concept is yet to be reported.The study in this paper describes a testbed — along with its Software Defined Networking (SDN) and Network Function Virtualization (NFV) capabilities — which is used to experimentally showcase the key functionalities that are required by VNF fault-tolerant methods. The testbed makes use of OpenROADM compliant Dense Wavelength Division Multiplexing (DWDM) equipment to implement the programmable backhaul of a Next Generation Radio Access Network (NG-RAN) Non-standalone (NSA) architecture running 4G Evolved Packet Core (EPC) with the 5G next-generation NodeB (gNB). Specifically, the testbed is used to showcase the live migration of virtualized EPC components that is required to restore pre-failure VNF. 
    more » « less