Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The open radio access network (O-RAN) represents a paradigm shift in RAN architecture, integrating intelligence into communication networks via xApps -- control applications for managing RAN resources. This integration facilitates the adoption of AI for network optimization and resource management. However, there is a notable gap in practical network performance analyzers capable of assessing the functionality and efficiency of xApps in near real-time within operational networks. Addressing this gap, this article introduces a comprehensive network performance analyzer, tailored for the near-real time RAN intelligent controller. We present the design, development, and application scenarios for this testing framework, including its components, software, and tools, providing an end-to-end solution for evaluating the performance of xApps in O-RAN environments.more » « lessFree, publicly-accessible full text available September 27, 2025
-
Free, publicly-accessible full text available May 20, 2025
-
The open radio access network (O-RAN) offers new degrees of freedom for building and operating advanced cellular networks. Emphasizing on RAN disaggregation, open interfaces, multi-vendor support, and RAN intelligent controllers (RICs), O-RAN facilitates adaptation to new applications and technology trends. Yet, this architecture introduces new security challenges. This article proposes leveraging zero trust principles for O-RAN security. We introduce zero trust RAN (ZTRAN), which embeds service authentication, intrusion detection, and secure slicing subsystems that are encapsulated as xApps. We implement ZTRAN on the open artificial intelligence cellular (OAIC) research platform and demonstrate its feasibility and effectiveness in terms of legitimate user throughput and latency figures. Our experimental analysis illustrates how ZTRAN's intrusion detection and secure slicing microservices operate effectively and in concert as part of O-RAN Alliance's containerized near-real time RIC. Research directions include exploring machine learning and additional threat intelligence feeds for improving the performance and extending the scope of ZTRAN.more » « less
-
End-to-End O-RAN Security Architecture, Threat Surface, Coverage, and the Case of the Open FronthaulO-RAN establishes an advanced radio access network (RAN) architecture that supports inter-operable, multi-vendor, and artificial intelligence (AI) controlled wireless access networks. The unique components, interfaces, and technologies of O-RAN differentiate it from the 3GPP RAN. Because O-RAN supports 3GPP protocols, currently 4G and 5G, while offering additional network interfaces and controllers, it has a larger attack surface. The O-RAN security requirements, vulnerabilities, threats, and countermeasures must be carefully assessed for it to become a platform for 5G Advanced and future 6G wireless. This article presents the ongoing standardization activities of the O-RAN Alliance for modeling the potential threats to the network and to the open fronthaul interface, in particular. We identify end-to-end security threats and discuss those on the open fronthaul in more detail. We then provide recommendations for countermeasures to tackle the identified security risks and encourage industry to establish standards and best practices for safe and secure implementations of the open fronthaul interface.more » « less
-
This research proposes a dynamic resource allocation method for vehicle-to-everything (V2X) communications in the six generation (6G) cellular networks. Cellular V2X (C-V2X) communications empower advanced applications but at the same time bring unprecedented challenges in how to fully utilize the limited physical-layer resources, given the fact that most of the applications require both ultra low latency, high data rate and high reliability. Resource allocation plays a pivotal role to satisfy such requirements as well as guarantee quality of service (QoS). Based on this observation, a novel fuzzy-logic-assisted Q learning model (FAQ) is proposed to intelligently and dynamically allocate resources by taking advantage of the centralized allocation mode. The proposed FAQ model reuses the resources to maximize the network throughput while minimizing the interference caused by concurrent transmissions. The fuzzy-logic module expedites the learning and improves the performance of the Q-learning. A mathematical model is developed to analyze the network throughput considering the interference. To evaluate the performance, a system model for V2X communications is built for urban areas, where various V2X services are deployed in the network. Simulation results show that the proposed FAQ algorithm can significantly outperform deep reinforcement learning, Q-learning and other advanced allocation strategies regarding the convergence speed and the network throughput.more » « less
-
This demonstration explores the security concerns in 5G and beyond networks within open radio access network (O-RAN) deployments, focusing on active attacks disrupting cellular communications. An xApp developed on the open artificial intelligence cellular (OAIC) platform enables on-the-fly creation and management of network slices to mitigate such attacks. The xApp is hosted in the near-real time RAN intelligent controller (RIC) and establishes secure slices for the software radio network it controls. This solution presents a practical approach for resilient and secure network management in dynamic environments.more » « less
-
Unmanned aerial vehicles (UAVs) have witnessed widespread adoption in the modern world, with their development set to continue into the future. As UAV technology and applications advance, it becomes imperative to understand their communication capabilities. UAVs experience distinct radio propagation conditions compared to ground-based radio nodes, necessitating a critical investigation into aerial radio node performance. This paper analyzes interference in UAV-to-UAV (U2U) communications within drone corridors and proposes an interference mitigation strategy utilizing millimeter wave (mmWave) beamforming. Employing a semi-persistent scheduling approach from the Third Generation Partnership Project (3GPP) sidelink communications for low altitude aerial nodes in drone corridors, the study primarily examines interference from drone clusters within designated air corridors. To assess U2U communication performance, a 3GPP standard-compliant cross-layer simulator is developed. Simulation results demonstrate that employing mmWave beamforming instead of isotropic transmission substantially reduces interference, leading to higher communications reliability and enabling more UAVs to occupy and communicate in the airspace.more » « less
-
The open radio access network (O-RAN) is recognized for its modularity and adaptability, facilitating swift responses to emerging applications and technological advancements. However, this architecture's disaggregated nature, coupled with support from various vendors, introduces new security challenges. This paper proposes an innovative approach to bolster the security of future O-RAN deployments by leveraging RAN slicing principles. Central to this security enhancement is the concept of secure slicing. We introduce SliceX, an xApp designed to safeguard RAN resources while ensuring strict throughput and latency requirements are met for legitimate users. Leveraging the open artificial intelligence cellular re-search (OAIC) platform, we observed that the network latency averages around ten microseconds in a default configuration without SliceX. The latency escalates to over seven seconds in the presence of a malicious user equipment (UE) flooding the net-work with requests. SliceX intervenes, restoring network latency to normal levels, with a maximum latency of approximately 2.3 s. These and other numerical findings presented in this paper affirm the tangible advantages of SliceX in mitigating security threats and ensuring that 0- RAN deployments meet stringent performance requirements. Our research demonstrates the real-world effectiveness of secure slicing, making SliceX a valuable tool for military, government, and critical infrastructure opera-tors reliant on public wireless communication networks to fulfill their security, resiliency, and performance objectives.more » « less
-
The evolution of open architectures for Radio Ac-cess Networks (RANs) is revolutionizing network management and optimization. This transformation, fostered by O-RAN, expedites data acquisition and examination by exploiting newly established open interfaces. Moreover, it has led to the rise of near real-time RAN Intelligent Controllers (RICs), instigating a wave of AI-driven applications, or xApps, that employ Artificial Intelligence (AI)/Machine Learning (ML) methods. Nevertheless, deploying xApps as centralized applications presents substantial challenges, such as handling vast data transactions, potential delays, and security vulnerabilities, which are notably prominent within the multifaceted, decentralized, multivendor, and trustless nature of open networks. To alleviate these predicaments, a transition from centralized apps operating in near real-time to distributed real-time apps is imperative for augmented security and efficiency. This paper addresses these complexities by introducing an open platform that integrates a federated reinforcement learning algorithm to operate as distributed Apps (dApps) within the next-generation O-RAN architecture. We present evaluation results in a specific test environment.more » « less
-
Internet of Things (IoT) is becoming increasingly popular due to its ability to connect machines and enable an ecosystem for new applications and use cases. One such use case is industrial loT (1IoT) that refers to the application of loT in industrial settings especially engaging instrumentation and control of sensors and machines with Cloud technologies. Industries are counting on the fifth generation (5G) of mobile communications to provide seamless, ubiquitous and flexible connectivity among machines, people and sensors. The open radio access network (O-RAN) architecture adds additional interfaces and RAN intelligent controllers that can be leveraged to meet the IIoT service requirements. In this paper, we examine the connectivity requirements for IIoT that are dominated by two industrial applications: control and monitoring. We present the strength, weakness, opportunity, and threat (SWOT) analysis of O-RAN for IIoT and provide a use case example which illustrates how O-RAN can support diverse and changing IIoT network services. We conclude that the flexibility of the O-RAN architecture, which supports the latest cellular network standards and services, provides a path forward for next generation IIoT network design, deployment, customization, and maintenance. It offers more control but still lacks products-hardware and software-that are exhaustively tested in production like environments.more » « less