skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 13 until 2:00 AM ET on Friday, June 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Award ID contains: 2120442

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The evolution of open architectures for Radio Ac- cess Networks (RANs) is revolutionizing network management and optimization. This transformation, fostered by O-RAN, expedites data acquisition and examination by exploiting newly established open interfaces. Moreover, it has led to the rise of near real-time RAN Intelligent Controllers (RICs), instigating a wave of AI-driven applications, or xApps, that employ Artificial Intelligence (AI)/Machine Learning (ML) methods. Nevertheless, deploying xApps as centralized applications presents substantial challenges, such as handling vast data transactions, potential delays, and security vulnerabilities, which are notably prominent within the multifaceted, decentralized, multivendor, and trustless nature of open networks. To alleviate these predicaments, a transition from centralized apps operating in near real-time to distributed real-time apps is imperative for augmented security and efficiency. This paper addresses these complexities by introducing an open platform that integrates a federated reinforcement learning algorithm to operate as distributed Apps (dApps) within the next-generation O-RAN architecture. We present evaluation results in a specific test environment. 
    more » « less
    Free, publicly-accessible full text available November 15, 2024
  2. The open radio access network (O-RAN) is rec- ognized for its modularity and adaptability, facilitating swift responses to emerging applications and technological advance- ments. However, this architecture’s disaggregated nature, cou- pled with support from various vendors, introduces new security challenges. This paper proposes an innovative approach to bolster the security of future O-RAN deployments by leveraging RAN slicing principles. Central to this security enhancement is the concept of secure slicing. We introduce SliceX, an xApp designed to safeguard RAN resources while ensuring strict throughput and latency requirements are met for legitimate users. Leveraging the open artificial intelligence cellular re- search (OAIC) platform, we observed that the network latency averages around ten microseconds in a default configuration without SliceX. The latency escalates to over seven seconds in the presence of a malicious user equipment (UE) flooding the net- work with requests. SliceX intervenes, restoring network latency to normal levels, with a maximum latency of approximately 2.3 s. These and other numerical findings presented in this paper affirm the tangible advantages of SliceX in mitigating security threats and ensuring that O-RAN deployments meet stringent performance requirements. Our research demonstrates the real- world effectiveness of secure slicing, making SliceX a valuable tool for military, government, and critical infrastructure opera- tors reliant on public wireless communication networks to fulfill their security, resiliency, and performance objectives. 
    more » « less
    Free, publicly-accessible full text available November 15, 2024
  3. This demonstration explores the security concerns in 5G and beyond networks within open radio access network (O-RAN) deployments, focusing on active attacks disrupting cellular communications. An xApp developed on the open artificial intelligence cellular (OAIC) platform enables on-the-fly creation and management of network slices to mitigate such attacks. The xApp is hosted in the near-real time RAN intelligent controller (RIC) and establishes secure slices for the software radio network it controls. This solution presents a practical approach for resilient and secure network management in dynamic environments. 
    more » « less
    Free, publicly-accessible full text available November 1, 2024
  4. This research proposes a dynamic resource allocation method for vehicle-to-everything (V2X) communications in the six generation (6G) cellular networks. Cellular V2X (C-V2X) communications empower advanced applications but at the same time bring unprecedented challenges in how to fully utilize the limited physical-layer resources, given the fact that most of the applications require both ultra low latency, high data rate and high reliability. Resource allocation plays a pivotal role to satisfy such requirements as well as guarantee quality of service (QoS). Based on this observation, a novel fuzzy-logic-assisted Q learning model (FAQ) is proposed to intelligently and dynamically allocate resources by taking advantage of the centralized allocation mode. The proposed FAQ model reuses the resources to maximize the network throughput while minimizing the interference caused by concurrent transmissions. The fuzzy-logic module expedites the learning and improves the performance of the Q-learning. A mathematical model is developed to analyze the network throughput considering the interference. To evaluate the performance, a system model for V2X communications is built for urban areas, where various V2X services are deployed in the network. Simulation results show that the proposed FAQ algorithm can significantly outperform deep reinforcement learning, Q learning and other advanced allocation strategies regarding the convergence speed and the network throughput. 
    more » « less
    Free, publicly-accessible full text available July 14, 2024
  5. Internet of Things (IoT) is becoming increasingly popular due to its ability to connect machines and enable an ecosystem for new applications and use cases. One such use case is industrial loT (1IoT) that refers to the application of loT in industrial settings especially engaging instrumentation and control of sensors and machines with Cloud technologies. Industries are counting on the fifth generation (5G) of mobile communications to provide seamless, ubiquitous and flexible connectivity among machines, people and sensors. The open radio access network (O-RAN) architecture adds additional interfaces and RAN intelligent controllers that can be leveraged to meet the IIoT service requirements. In this paper, we examine the connectivity requirements for IIoT that are dominated by two industrial applications: control and monitoring. We present the strength, weakness, opportunity, and threat (SWOT) analysis of O-RAN for IIoT and provide a use case example which illustrates how O-RAN can support diverse and changing IIoT network services. We conclude that the flexibility of the O-RAN architecture, which supports the latest cellular network standards and services, provides a path forward for next generation IIoT network design, deployment, customization, and maintenance. It offers more control but still lacks products-hardware and software-that are exhaustively tested in production like environments. 
    more » « less
  6. Open Radio Access Network (O-RAN) has introduced an emerging RAN architecture that enables openness, intelligence, and automated control. The RAN Intelligent Controller (RIC) provides the platform to design and deploy network controllers. xApps are the applications that can leverage machine learning (ML) algorithms for near-real time control. Despite the opportunities provided by this new architecture, the progress of practical artificial intelligence (AI)-based solutions for network control and automation has been slow. There is a lack of end-to-end solutions for designing, deploying, and testing AI-based xApps in production-like network settings. This paper introduces an end-to-end O-RAN design and evaluation procedure using the latest O-RAN architecture and interface releases. We provide details on the development of a reinforcement learning (RL)-based xApp, considering two RL approaches and present numerical results to validate the xApp. 
    more » « less
  7. This paper defines the problem of optimizing the downlink multi-user multiple input, single output (MU-MISO) sum-rate for ground users served by an aerial reconfigurable intelligent surface (ARIS) that acts as a relay to the terrestrial base station. The deep deterministic policy gradient (DDPG) is proposed to calculate the optimal active beamforming matrix at the base station and the phase shifts of the reflecting elements at the ARIS to maximize the data rate. Simulation results show the superiority of the proposed scheme when compared to deep Q-learning (DQL) and baseline approaches. 
    more » « less
  8. This paper defines the problem of optimizing the downlink multi-user multiple input, single output (MU-MISO) sum-rate for ground users served by an aerial reconfigurable intelligent surface (ARIS) that acts as a relay to the terrestrial base station. The deep deterministic policy gradient (DDPG) is proposed to calculate the optimal active beamforming matrix at the base station and the phase shifts of the reflecting elements at the ARIS to maximize the data rate. Simulation results show the superiority of the proposed scheme when compared to deep Q-learning (DQL) and baseline approaches. 
    more » « less
  9. The open radio access network (O-RAN) describes an industry-driven open architecture and interfaces for building next generation RANs with artificial intelligence (AI) controllers. We circulated a survey among researchers, developers, and practitioners to gather their perspectives on O-RAN as a framework for 6G wireless research and development (R&D). The majority responded in favor of O-RAN and identified R&D of interest to them. Motivated by these responses, this paper identifies the limitations of the current O-RAN specifications and the technologies for overcoming them. We recognize end-to-end security, deterministic latency, physical layer real-time control, and testing of AI-based RAN control applications as the critical features to enable and discuss R&D opportunities for extending the architectural capabilities of O-RAN as a platform for 6G wireless. 
    more » « less