Abstract Large diffuse galaxies are hard to find, but understanding the environments where they live, their numbers, and ultimately their origins, is of intense interest and importance for galaxy formation and evolution. Using Subaru’s Hyper Suprime-Cam Strategic Survey Program, we perform a systematic search for low surface brightness galaxies and present novel and effective methods for detecting and modeling them. As a case study, we surveyed 922 Milky Way analogs in the nearby Universe (0.01 <z< 0.04) and built a large sample of satellite galaxies that are outliers in the mass–size relation. These “ultra-puffy” galaxies (UPGs), defined to be 1.5σabove the average mass–size relation, represent the tail of the satellite size distribution. We find that each MW analog hostsNUPG= 0.31 ± 0.05 UPGs on average, which is consistent with but slightly lower than the observed abundance at this halo mass in the Local Volume. We also construct a sample of ultra-diffuse galaxies (UDGs) in MW analogs and find an abundance ofNUDG= 0.44 ± 0.05 per host. With literature results, we confirm that the UDG abundance scales with the host halo mass following a sublinear power law. We argue that our definition of UPGs, which is based on the mass–size relation, is more physically motivated than the common definition of UDGs, which depends on the surface brightness and size cuts and thus yields different surface mass density cuts for quenched and star-forming galaxies. 
                        more » 
                        « less   
                    
                            
                            Beyond Ultra-diffuse Galaxies. II. Environmental Quenching of Mass–Size Outliers among the Satellites of Milky Way Analogs
                        
                    
    
            Abstract Recent observations have reignited interest in a population of dwarf galaxies that are large and diffuse for their mass, often called ultra-diffuse galaxies (UDGs). However, the origin and evolution of these mass–size outliers and the role of the environment are still unclear. Using the exquisitely deep and wide Hyper Suprime-Cam Strategic Survey images, we search for ultra-puffy galaxies (UPGs), defined as being 1.5σlarger than the average size for their mass, around Milky Way–like galaxies. We present the sizes and radial distributions of mass–size outliers and derive their quenched fraction to explore the impact of the environment. Surprisingly, despite being outliers in size, the UPGs have a similar quenched fraction as normal-sized satellites of Milky Way analogs in both observations and simulations, suggesting that quenching is not tied to being a mass–size outlier. The quenched fraction is higher for the UPGs associated with redder hosts, as well as those that are closer to the host in projection. In contrast, the UDGs are overall redder and more quiescent compared with normal satellites. We show that the classic definition of UDGs is heavily weighted toward quenched galaxies and thus cannot be used for a study of quenching of mass–size outliers. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2106730
- PAR ID:
- 10461966
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 955
- Issue:
- 1
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 2
- Size(s):
- Article No. 2
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Isolated dwarf galaxies usually exhibit robust star formation but satellite dwarf galaxies are often devoid of young stars, even in Milky Way–mass groups. Dwarf galaxies thus offer an important laboratory of the environmental processes that cease star formation. We explore the balance of quiescent and star-forming galaxies (quenched fractions) for a sample of ∼400 satellite galaxies around 30 Local Volume hosts from the Exploration of Local VolumE Satellites (ELVES) Survey. We present quenched fractions as a function of satellite stellar mass, projected radius, and host halo mass, to conclude that overall, the quenched fractions are similar to the Milky Way, dropping below 50% at satelliteM*≈ 108M⊙. We may see hints that quenching is less efficient at larger radii. Through comparison with the semianalytic modeling codeSatGen, we are also able to infer average quenching times as a function of satellite mass in host halo-mass bins. There is a gradual increase in quenching time with satellite stellar mass rather than the abrupt change from rapid to slow quenching that has been inferred for the Milky Way. We also generally infer longer average quenching times than recent hydrodynamical simulations. Our results are consistent with models that suggest a wide range of quenching times are possible via ram pressure stripping, depending on the clumpiness of the circumgalactic medium, the orbits of the satellites, and the degree of earlier preprocessing.more » « less
- 
            Abstract We study satellite counts and quenched fractions for satellites of Milky Way analogs inRomulus25, a large-volume cosmological hydrodynamic simulation. Depending on the definition of a Milky Way analog, we have between 66 and 97 Milky Way analogs inRomulus25, a 25 Mpc per-side uniform volume simulation. We use these analogs to quantify the effect of environment and host properties on satellite populations. We find that the number of satellites hosted by a Milky Way analog increases predominantly with host stellar mass, while environment, as measured by the distance to a Milky Way–mass or larger halo, may have a notable impact in high isolation. Similarly, we find that the satellite quenched fraction for our analogs also increases with host stellar mass, and potentially in higher-density environments. These results are robust for analogs within 3 Mpc of another Milky Way–mass or larger halo, the environmental parameter space where the bulk of our sample resides. We place these results in the context of observations through comparisons to the Exploration of Local VolumE Satellites and Satellites Around Galactic Analogs surveys. Our results are robust to changes in Milky Way analog selection criteria, including those that mimic observations. Finally, as our samples naturally include Milky Way–Andromeda pairs, we examine quenched fractions in pairs versus isolated systems. We find potential evidence, though not conclusive, that pairs, defined as being within 1 Mpc of another Milky Way–mass or larger halo, may have higher satellite quenched fractions.more » « less
- 
            Abstract To better understand the formation of large, low-surface-brightness galaxies, we measure the correlation function between ultradiffuse galaxy (UDG) candidates and Milky Way analogs (MWAs). We find that: (1) the projected radial distribution of UDG satellites (projected surface density ∝r−0.84±0.06) is consistent with that of normal satellite galaxies; (2) the number of UDG satellites per MWA (SUDG) is ∼0.5 ± 0.1 over projected radii from 20 to 250 kpc and −17 <Mr< −13.5; (3)SUDGis consistent with a linear extrapolation of the relationship between the number of UDGs per halo versus halo mass obtained over galaxy group and cluster scales; (4) red UDG satellites dominate the population of UDG satellites (∼80%); (5) over the range of satellite magnitudes studied, UDG satellites comprise ∼10% of the satellite galaxy population of MWAs; and (6) a significant fraction of these (∼13%) have estimated total masses >1010.9M⊙or, equivalently, at least half the halo mass of the LMC, and populate a large fraction (∼18%) of the expected subhalos down to these masses. All of these results suggest a close association between the overall low-mass galaxy population and UDGs, which we interpret as favoring models where UDG formation principally occurs within the general context of low-mass galaxy formation over models invoking more exotic physical processes specifically invoked to form UDGs.more » « less
- 
            null (Ed.)ABSTRACT We present the first satellite system of the Large Binocular Telescope Satellites Of Nearby Galaxies Survey (LBT-SONG), a survey to characterize the close satellite populations of Large Magellanic Cloud to Milky-Way-mass, star-forming galaxies in the Local Volume. In this paper, we describe our unresolved diffuse satellite finding and completeness measurement methodology and apply this framework to NGC 628, an isolated galaxy with ∼1/4 the stellar mass of the Milky Way. We present two new dwarf satellite galaxy candidates: NGC 628 dwA, and dwB with MV = −12.2 and −7.7, respectively. NGC 628 dwA is a classical dwarf while NGC 628 dwB is a low-luminosity galaxy that appears to have been quenched after reionization. Completeness corrections indicate that the presence of these two satellites is consistent with CDM predictions. The satellite colours indicate that the galaxies are neither actively star forming nor do they have the purely ancient stellar populations characteristic of ultrafaint dwarfs. Instead, and consistent with our previous work on the NGC 4214 system, they show signs of recent quenching, further indicating that environmental quenching can play a role in modifying satellite populations even for hosts smaller than the Milky Way.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
