Computational prediction of DNA-binding residues (DBRs) and the RNA-binding residues (RBRs) in protein sequences is an active area of research, with about 90 predictors and 20 that were published over the last two years. The new predictors rely on sophisticated deep neural networks and protein language models, produce accurate predictions, and are conveniently available as code and/or web servers. However, we identified shortage of tools that predict these interactions in intrinsically disordered regions and tools capable of predicting residues that interact with specific RNA and DNA types. Moreover, cross-predictions between RBRs and DBRs should be quantified and minimized to ensure that future tools accurately differentiate between these two distinct types of nucleic acids.
more »
« less
Partner‐specific prediction of RNA‐binding residues in proteins: A critical assessment
Abstract RNA‐protein interactions play essential roles in regulating gene expression. While some RNA‐protein interactions are “specific”, that is, the RNA‐binding proteins preferentially bind to particular RNA sequence or structural motifs, others are “non‐RNA specific.” Deciphering the protein‐RNA recognition code is essential for comprehending the functional implications of these interactions and for developing new therapies for many diseases. Because of the high cost of experimental determination of protein‐RNA interfaces, there is a need for computational methods to identify RNA‐binding residues in proteins. While most of the existing computational methods for predicting RNA‐binding residues in RNA‐binding proteins are oblivious to the characteristics of the partner RNA, there is growing interest in methods for partner‐specific prediction of RNA binding sites in proteins. In this work, we assess the performance of two recently published partner‐specific protein‐RNA interface prediction tools, PS‐PRIP, and PRIdictor, along with our own new tools. Specifically, we introduce a novel metric, RNA‐specificity metric (RSM), for quantifying the RNA‐specificity of the RNA binding residues predicted by such tools. Our results show that the RNA‐binding residues predicted by previously published methods are oblivious to the characteristics of the putative RNA binding partner. Moreover, when evaluated using partner‐agnostic metrics, RNA partner‐specific methods are outperformed by the state‐of‐the‐art partner‐agnostic methods. We conjecture that either (a) the protein‐RNA complexes in PDB are not representative of the protein‐RNA interactions in nature, or (b) the current methods for partner‐specific prediction of RNA‐binding residues in proteins fail to account for the differences in RNA partner‐specific versus partner‐agnostic protein‐RNA interactions, or both.
more »
« less
- Award ID(s):
- 1640834
- PAR ID:
- 10461980
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Proteins: Structure, Function, and Bioinformatics
- Volume:
- 87
- Issue:
- 3
- ISSN:
- 0887-3585
- Page Range / eLocation ID:
- p. 198-211
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Dozens of impactful methods that predict intrinsically disordered regions (IDRs) in protein sequences that interact with proteins and/or nucleic acids were developed. Their training and assessment rely on the IDR‐level binding annotations, while the equivalent structure‐trained methods predict more granular annotations of binding amino acids (AA). We compiled a new benchmark dataset that annotates binding AA in IDRs and applied it to complete a first‐of‐its‐kind assessment of predictions of the disordered binding residues. We evaluated a representative collection of 14 methods, used several hundred low‐similarity test proteins, and focused on the challenging task of differentiating these binding residues from other disordered AA and considering ligand type‐specific predictions (protein–protein vs. protein–nucleic acid interactions). We found that current methods struggle to accurately predict binding IDRs among disordered residues; however, better‐than‐random tools predict disordered binding residues significantly better than binding IDRs. We identified at least one relatively accurate tool for predicting disordered protein‐binding and disordered nucleic acid‐binding AA. Analysis of cross‐predictions between interactions with protein and nucleic acids revealed that most methods are ligand‐type‐agnostic. Only two predictors of the nucleic acid‐binding IDRs and two predictors of the protein‐binding IDRs can be considered as ligand‐type‐specific. We also discussed several potential future directions that would move this field forward by producing more accurate methods that target the prediction of binding residues, reduce cross‐predictions, and cover a broader range of ligand types.more » « less
-
Abstract Computational prediction of nucleic acid-binding residues in protein sequences is an active field of research, with over 80 methods that were released in the past 2 decades. We identify and discuss 87 sequence-based predictors that include dozens of recently published methods that are surveyed for the first time. We overview historical progress and examine multiple practical issues that include availability and impact of predictors, key features of their predictive models, and important aspects related to their training and assessment. We observe that the past decade has brought increased use of deep neural networks and protein language models, which contributed to substantial gains in the predictive performance. We also highlight advancements in vital and challenging issues that include cross-predictions between deoxyribonucleic acid (DNA)-binding and ribonucleic acid (RNA)-binding residues and targeting the two distinct sources of binding annotations, structure-based versus intrinsic disorder-based. The methods trained on the structure-annotated interactions tend to perform poorly on the disorder-annotated binding and vice versa, with only a few methods that target and perform well across both annotation types. The cross-predictions are a significant problem, with some predictors of DNA-binding or RNA-binding residues indiscriminately predicting interactions with both nucleic acid types. Moreover, we show that methods with web servers are cited substantially more than tools without implementation or with no longer working implementations, motivating the development and long-term maintenance of the web servers. We close by discussing future research directions that aim to drive further progress in this area.more » « less
-
Intrinsically disordered regions (IDRs) are important components of protein functionality, with their charge distribution serving as a key factor in determining their roles. Notably, many proteins possess IDRs that are highly negatively charged, characterized by sequences rich in aspartate (D) or glutamate (E) residues. Bioinformatic analyses indicate that negatively charged low-complexity IDRs are significantly more common than their positively charged counterparts rich in arginine (R) or lysine (K). For instance, sequences of 10 or more consecutive negatively charged residues (D or E) are present in 268 human proteins. In contrast, corresponding sequences of 10 or more consecutive positively charged residues (K or R) are present in only 12 human proteins. Interestingly, about 50% of proteins containing D/E tracts function as DNA-binding or RNA-binding proteins. Negatively charged IDRs can electrostatically mimic nucleic acids and dynamically compete with them for the DNA-binding domains (DBDs) or RNA-binding domains (RBDs) that are positively charged. This leads to a phenomenon known as autoinhibition, in which the negatively charged IDRs inhibit binding to nucleic acids by occupying the binding interfaces within the proteins through intramolecular interactions. Rather than merely reducing binding activity, negatively charged IDRs offer significant advantages for the functions of DNA/RNA-binding proteins. The dynamic competition between negatively charged IDRs and nucleic acids can accelerate the target search processes for these proteins. When a protein encounters DNA or RNA, the electrostatic repulsion force between the nucleic acids and the negatively charged IDRs can trigger conformational changes that allow the nucleic acids to access DBDs or RBDs. Additionally, when proteins are trapped at high-affinity non-target sites on DNA or RNA ("decoys"), the electrostatic repulsion from the negatively charged IDRs can rescue the proteins from these traps. Negatively charged IDRs act as gatekeepers, rejecting nonspecific ligands while allowing the target to access the molecular interfaces of DBDs or RBDs, which increases binding specificity. These IDRs can also promote proper protein folding, facilitate chromatin remodeling by displacing other proteins bound to DNA, and influence phase separation, affecting local pH. The functions of negatively charged IDRs can be regulated through protein-protein interactions, post-translational modifications, and proteolytic processing. These characteristics can be harnessed as tools for protein engineering. Some frame-shift mutations that convert negatively charged IDRs into positively charged ones are linked to human diseases. Therefore, it is crucial to understand the physicochemical properties and functional roles of negatively charged IDRs that compete with nucleic acids.more » « less
-
Musier-Forsyth, Karin (Ed.)RNA-binding proteins play crucial roles in various cellular functions, and contain abundant disordered protein regions. The disordered regions in RNA-binding proteins are rich in repetitive sequences, such as poly-K/R, poly-N/Q, poly-A, and poly-G residues. Our bioinformatic analysis identified a largely neglected repetitive sequence family we define as electronegative clusters (ENCs) that contain acidic residues and/or phosphorylation sites. The abundance and length of ENCs exceed other known repetitive sequences. Despite their abundance, the functions of ENCs in RNA-binding proteins are still elusive. To investigate the impacts of ENCs on protein stability, RNA-binding affinity, and specificity, we selected one RNA-binding protein, the ribosomal biogenesis factor 15 (Nop15) as a model. We found that the Nop15 ENC increases protein stability and inhibits nonspecific RNA binding, but minimally interferes with specific RNA binding. To investigate the effect of ENCs on sequence specificity of RNA binding, we grafted an ENC to another RNA-binding protein, Ser/Arg-rich splicing factor 3 (SRSF3). Using RNA Bind-n-Seq, we found that the engineered ENC inhibits disparate RNA motifs differently, instead of weakening all RNA motifs to the same extent. The motif site directly involved in electrostatic interaction is more susceptible to the ENC inhibition. These results suggest that one of functions of ENCs is to regulate RNA binding via electrostatic interaction. This is consistent with our finding that ENCs are also overrepresented in DNA-binding proteins, while underrepresented in halophiles, in which nonspecific nucleic acid binding is inhibited by high concentrations of salts.more » « less
An official website of the United States government
