As countries look toward re-opening of economic activities amidst the ongoing COVID-19 pandemic, ensuring public health has been challenging. While contact tracing only aims to track past activities of infected users, one path to safe reopening is to develop reliable spatiotemporal risk scores to indicate the propensity of the disease. Existing works which aim at developing risk scores either rely on compartmental model-based reproduction numbers (which assume uniform population mixing) or develop coarse-grain spatial scores based on reproduction number (R0) and macro-level density-based mobility statistics. Instead, in this article, we develop a Hawkes process-based technique to assign relatively fine-grain spatial and temporal risk scores by leveraging high-resolution mobility data based on cell-phone originated location signals. While COVID-19 risk scores also depend on a number of factors specific to an individual, including demography and existing medical conditions, the primary mode of disease transmission is via physical proximity and contact. Therefore, we focus on developing risk scores based on location density and mobility behaviour. We demonstrate the efficacy of the developed risk scores via simulation based on real-world mobility data. Our results show that fine-grain spatiotemporal risk scores based on high-resolution mobility data can provide useful insights and facilitate safe re-opening.
more »
« less
Quarantine in Motion: A Graph Learning Framework to Reduce Disease Transmission Without Lockdown
Exposure notification applications are developed to increase the scale and speed of disease contact tracing. Indeed, by taking advantage of Bluetooth technology, they track the infected population’s mobility and then inform close contacts to get tested. In this paper, we ask whether these applications can extend from reactive to preemptive risk management tools? To this end, we propose a new framework that utilizes graph neural networks (GNN) and real-world Foursquare mobility data to predict high risk locations on an hourly basis. As a proof of concept, we then simulate a risk-informed Foursquare population of over 36,000 people in Austin TX after the peak of an outbreak. We find that even after 50% of the population has been infected with COVID-19, they can still maintain their mobility, while reducing the new infections by 13%. Consequently, these results are a first step towards achieving what we call Quarantine in Motion.
more »
« less
- Award ID(s):
- 2107085
- PAR ID:
- 10462129
- Date Published:
- Journal Name:
- ASONAM
- Page Range / eLocation ID:
- 454 to 461
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Non-pharmacologic interventions (NPIs) promote protective actions to lessen exposure risk to COVID-19 by reducing mobility patterns. However, there is a limited understanding of the underlying mechanisms associated with reducing mobility patterns especially for socially vulnerable populations. The research examines two datasets at a granular scale for five urban locations. Through exploratory analysis of networks, statistics, and spatial clustering, the research extensively investigates the exposure risk reduction after the implementation of NPIs to socially vulnerable populations, specifically lower income and non-white populations. The mobility dataset tracks population movement across ZIP codes for an origin–destination (O–D) network analysis. The population activity dataset uses the visits from census block groups (cbg) to points-of-interest (POIs) for network analysis of population-facilities interactions. The mobility dataset originates from a collaboration with StreetLight Data, a company focusing on transportation analytics, whereas the population activity dataset originates from a collaboration with SafeGraph, a company focusing on POI data. Both datasets indicated that low-income and non-white populations faced higher exposure risk. These findings can assist emergency planners and public health officials in comprehending how different populations are able to implement protective actions and it can inform more equitable and data-driven NPI policies for future epidemics.more » « less
-
null (Ed.)An actively controlled Susceptible-Infected-Susceptible (actSIS) contagion model is presented for studying epidemic dynamics with continuous-time feedback control of infection rates. Our work is inspired by the observation that epidemics can be controlled through decentralized disease-control strategies such as quarantining, sheltering in place, social distancing, etc., where individuals can actively modify their contact rates in response to observations of the infection levels in the population. Accounting for a time lag in observations and categorizing individuals into distinct sub-populations based on their risk profiles, we show that the actSIS model manifests qualitatively different features as compared with the SIS model. In a homogeneous population of risk-averters, the endemic equilibrium is always reduced, although the transient infection level can overshoot or undershoot. In a homogeneous population of risk-tolerating individuals, the system exhibits bistability, which can also lead to reduced infection. For a heterogeneous population comprised of risk-tolerators and risk-averters, we prove conditions on model parameters for the existence of a Hopf bifurcation and sustained oscillations in the infected population.more » « less
-
Morrison, Amy C (Ed.)The Zika virus epidemic of 2015–16, which caused over 1 million confirmed or suspected human cases in the Caribbean and Latin America, was driven by a combination of movement of infected humans and availability of suitable habitat for mosquito species that are key disease vectors. Both human mobility and mosquito vector abundances vary seasonally, and the goal of our research was to analyze the interacting effects of disease vector densities and human movement across metapopulations on disease transmission intensity and the probability of super-spreader events. Our research uses the novel approach of combining geographical modeling of mosquito presence with network modeling of human mobility to offer a comprehensive simulation environment for Zika virus epidemics that considers a substantial number of spatial and temporal factors compared to the literature. Specifically, we tested the hypotheses that 1) regions with the highest probability of mosquito presence will have more super-spreader events during dry months, when mosquitoes are predicted to be more abundant, 2) regions reliant on tourism industries will have more super-spreader events during wet months, when they are more likely to contribute to network-level pathogen spread due to increased travel. We used the case study of Colombia, a country with a population of about 50 million people, with an annual calendar that can be partitioned into overlapping cycles of wet and dry seasons and peak tourism and off tourism seasons that drive distinct cyclical patterns of mosquito abundance and human movement. Our results show that whether the first infected human was introduced to the network during the wet versus dry season and during the tourism versus off tourism season profoundly affects the severity and trajectory of the epidemic. For example, Zika virus was first detected in Colombia in October of 2015. Had it originated in January, a dry season month with high rates of tourism, it likely could have infected up to 60% more individuals and up to 40% more super-spreader events may have occurred. In addition, popular tourism destinations such as Barranquilla and Cartagena have the highest risk of super-spreader events during the winter, whereas densely populated areas such as Medellín and Bogotá are at higher risk of sustained transmission during dry months in the summer. Our research demonstrates that public health planning and response to vector-borne disease outbreaks requires a thorough understanding of how vector and host patterns vary due to seasonality in environmental conditions and human mobility dynamics. This research also has strong implications for tourism policy and the potential response strategies in case of an emergent epidemic.more » « less
-
Hill, Alison L. (Ed.)The structure of contact networks affects the likelihood of disease spread at the population scale and the risk of infection at any given node. Though this has been well characterized for both theoretical and empirical networks for the spread of epidemics on completely susceptible networks, the long-term impact of network structure on risk of infection with an endemic pathogen, where nodes can be infected more than once, has been less well characterized. Here, we analyze detailed records of the transportation of cattle among farms in Turkey to characterize the global and local attributes of the directed—weighted shipments network between 2007-2012. We then study the correlations between network properties and the likelihood of infection with, or exposure to, foot-and-mouth disease (FMD) over the same time period using recorded outbreaks. The shipments network shows a complex combination of features (local and global) that have not been previously reported in other networks of shipments; i.e. small-worldness, scale-freeness, modular structure, among others. We find that nodes that were either infected or at high risk of infection with FMD (within one link from an infected farm) had disproportionately higher degree, were more central (eigenvector centrality and coreness), and were more likely to be net recipients of shipments compared to those that were always more than 2 links away from an infected farm. High in-degree (i.e. many shipments received) was the best univariate predictor of infection. Low in-coreness (i.e. peripheral nodes) was the best univariate predictor of nodes always more than 2 links away from an infected farm. These results are robust across the three different serotypes of FMD observed in Turkey and during periods of low-endemic prevalence and high-prevalence outbreaks.more » « less
An official website of the United States government

