Abstract Next‐generation sequencing technologies now allow researchers of non‐model systems to perform genome‐based studies without the requirement of a (often unavailable) closely related genomic reference. We evaluated the role of restriction endonuclease (RE) selection in double‐digest restriction‐site‐associatedDNAsequencing (ddRADseq) by generating reduced representation genome‐wide data using four differentREcombinations. Our expectation was thatREselections targeting longer, more complex restriction sites would recover fewer loci thanREwith shorter, less complex sites. We sequenced a diverse sample of non‐model arachnids, including five congeneric pairs of harvestmen (Opiliones) and four pairs of spiders (Araneae). Sample pairs consisted of either conspecifics or closely related congeneric taxa, and in total 26 sample pair analyses were tested. Sequence demultiplexing, read clustering and variant calling were performed in thepyRADprogram. The 6‐base pair cutterEcoRIcombined with methylated site‐specific 4‐base pair cutterMspIproduced, on average, the greatest numbers of intra‐individual loci and shared loci per sample pair. As expected, the number of shared loci recovered for a sample pair covaried with the degree of genetic divergence, estimated with cytochrome oxidase I sequences, although this relationship was non‐linear. Our comparative results will prove useful in guiding protocol selection for ddRADseq experiments on many arachnid taxa where reference genomes, even from closely related species, are unavailable.
more »
« less
The problem of genetic code misreading during protein synthesis
Abstract Saccharomyces cerevisiaehas been an important model for determining the frequency of translational misreading events, those in which a tRNA pairs incorrectly to the mRNA and inserts an amino acid not specified by the codon in the mRNA. Misreading errors have been quantified in vivo using reporter protein systems or mass spectrometry with both approaches converging on a simple model for most misreading. The available data show that misreading tRNAs must form stereotypical base mismatches that correspond to those that can mimic Watson–Crick base pairs when formed in the ribosomal A site. Errors involving other mismatches occur significantly less frequently. This work debunks the idea of an average misreading frequency of 5 × 10−4per codon that extends across the genetic code. Instead, errors come in two distinct classes—high frequency and low frequency events—with most errors being of the low frequency type. A comparison of misreading errors inS. cerevisiaeandEscherichia colisuggests the existence of a mechanism that reduces misreading frequency in yeast; this mechanism may operate in eukaryotes generally.
more »
« less
- Award ID(s):
- 1645795
- PAR ID:
- 10462183
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Yeast
- Volume:
- 36
- Issue:
- 1
- ISSN:
- 0749-503X
- Page Range / eLocation ID:
- p. 35-42
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
<bold>Summary</bold> Cytosolic calcium concentration ([Ca2+]cyt) and heterotrimeric G‐proteins are universal eukaryotic signaling elements. In plant guard cells, extracellular calcium (Cao) is as strong a stimulus for stomatal closure as the phytohormone abscisic acid (ABA), but underlying mechanisms remain elusive. Here, we report that the sole Arabidopsis heterotrimeric Gβ subunit,AGB1, is required for four guard cell Caoresponses: induction of stomatal closure; inhibition of stomatal opening; [Ca2+]cytoscillation; and inositol 1,4,5‐trisphosphate (InsP3) production. Stomata in wild‐type Arabidopsis (Col) and in mutants of the canonical Gα subunit,GPA1, showed inhibition of stomatal opening and promotion of stomatal closure by Cao. By contrast, stomatal movements ofagb1mutants andagb1/gpa1double‐mutants, as well as those of theagg1agg2 Gγ double‐mutant, were insensitive to Cao. These behaviors contrast withABA‐regulated stomatal movements, which involveGPA1 andAGB1/AGG3 dimers, illustrating differential partitioning of G‐protein subunits among stimuli with similar ultimate impacts, which may facilitate stimulus‐specific encoding.AGB1knockouts retained reactive oxygen species andNOproduction, but lostYC3.6‐detected [Ca2+]cytoscillations in response to Cao, initiating only a single [Ca2+]cytspike. Experimentally imposed [Ca2+]cytoscillations restored stomatal closure inagb1. Yeast two‐hybrid and bimolecular complementation fluorescence experiments revealed thatAGB1 interacts with phospholipase Cs (PLCs), and Caoinduced InsP3 production in Col but not inagb1. In sum, G‐protein signaling viaAGB1/AGG1/AGG2 is essential for Cao‐regulation of stomatal apertures, and stomatal movements in response to Caoapparently require Ca2+‐induced Ca2+release that is likely dependent on Gβγ interaction withPLCs leading to InsP3 production.more » « less
-
Summary We investigated the molecular basis and physiological implications of anion transport during pollen tube (PT) growth inArabidopsis thaliana(Col‐0).Patch‐clamp whole‐cell configuration analysis of pollen grain protoplasts revealed three subpopulations of anionic currents differentially regulated by cytoplasmic calcium ([Ca2+]cyt). We investigated the pollen‐expressed proteinsAtSLAH3,AtALMT12,AtTMEM16 andAtCCCas the putative anion transporters responsible for these currents.AtCCC‐GFPwas observed at the shank andAtSLAH3‐GFPat the tip and shank of thePTplasma membrane. Both are likely to carry the majority of anion current at negative potentials, as extracellular anionic fluxes measured at the tip ofPTs with an anion vibrating probe were significantly lower inslah3−/−andccc−/−mutants, but unaffected inalmt12−/−andtmem16−/−. We further characterised the effect ofpHandGABAby patch clamp. Strong regulation by extracellularpHwas observed in the wild‐type, but not intmem16−/−. Our results are compatible withAtTMEM16 functioning as an anion/H+cotransporter and therefore, as a putativepHsensor.GABApresence: (1) inhibited the overall currents, an effect that is abrogated in thealmt12−/−and (2) reduced the current inAtALMT12 transfectedCOS‐7 cells, strongly suggesting the direct interaction ofGABAwithAtALMT12.Our data show thatAtSLAH3 andAtCCCactivity is sufficient to explain the major component of extracellular anion fluxes, and unveils a possible regulatory system linkingPTgrowth modulation bypH,GABA, and [Ca2+]cytthrough anionic transporters.more » « less
-
RationaleIt is imperative to understand how chemical preservation alters tissue isotopic compositions before using historical samples in ecological studies. Specifically, although compound‐specific isotope analysis of amino acids (CSIA‐AA) is becoming a widely used tool, there is little information on how preservation techniques affect amino acidδ15N values. MethodsWe evaluated the effects of chemical preservatives on bulk tissueδ13C andδ15N and amino acidδ15N values, measured by gas chromatography/isotope ratio mass spectrometry (GC/IRMS), of (a) tuna (Thunnus albacares) and squid (Dosidicus gigas) muscle tissues that were fixed in formaldehyde and stored in ethanol for 2 years and (b) two copepod species,Calanus pacificusandEucalanus californicus, which were preserved in formaldehyde for 24–25 years. ResultsTissues in formaldehyde‐ethanol had higher bulkδ15N values (+1.4,D. gigas; +1.6‰,T. albacares), higherδ13C values forD. gigas(+0.5‰), and lowerδ13C values forT. albacares(−0.8‰) than frozen samples. The bulkδ15N values from copepods were not different those from frozen samples, although theδ13C values from both species were lower (−1.0‰ forE. californicusand −2.2‰ forC. pacificus) than those from frozen samples. The mean amino acidδ15N values from chemically preserved tissues were largely within 1‰ of those of frozen tissues, but the phenylalanineδ15N values were altered to a larger extent (range: 0.5–4.5‰). ConclusionsThe effects of preservation on bulkδ13C values were variable, where the direction and magnitude of change varied among taxa. The changes in bulkδ15N values associated with chemical preservation were mostly minimal, suggesting that storage in formaldehyde or ethanol will not affect the interpretation ofδ15N values used in ecological studies. The preservation effects on amino acidδ15N values were also mostly minimal, mirroring bulkδ15N trends, which is promising for future CSIA‐AA studies of archived specimens. However, there were substantial differences in phenylalanine and valineδ15N values, which we speculate resulted from interference in the chromatographic resolution of unknown compounds rather than alteration of tissue isotopic composition due to chemical preservation.more » « less
-
PremiseHerbarium specimens have been used to detect climate‐induced shifts in flowering time by using the day of year of collection (DOY) as a proxy for first or peak flowering date. Variation among herbarium sheets in their phenological status, however, undermines the assumption thatDOYaccurately represents any particular phenophase. Ignoring this variation can reduce the explanatory power of pheno‐climatic models (PCMs) designed to predict the effects of climate on flowering date. MethodsHere we present a protocol for the phenological scoring of imaged herbarium specimens using an ImageJ plugin, and we introduce a quantitative metric of a specimen's phenological status, the phenological index (PI), which we use inPCMs to control for phenological variation among specimens ofStreptanthus tortuosus(Brassicaceeae) when testing for the effects of climate onDOY. We demonstrate that includingPIas an independent variable improves model fit. ResultsIncludingPIinPCMs increased the modelR2relative toPCMs that excludedPI; regression coefficients for climatic parameters, however, remained constant. DiscussionOur protocol provides a simple, quantitative phenological metric for any observed plant. IncludingPIinPCMs increasesR2and enables predictions of theDOYof any phenophase under any specified climatic conditions.more » « less
An official website of the United States government
