skip to main content


Search for: All records

Award ID contains: 2007834

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we consider federated Q-learning, which aims to learn an optimal Q-function by periodically aggregating local Q-estimates trained on local data alone. Focusing on infinite-horizon tabular Markov decision processes, we provide sample complexity guarantees for both the synchronous and asynchronous variants of federated Q-learning. In both cases, our bounds exhibit a linear speedup with respect to the number of agents and sharper dependencies on other salient problem parameters. Moreover, existing approaches to federated Q-learning adopt an equally-weighted averaging of local Q-estimates, which can be highly sub-optimal in the asynchronous setting since the local trajectories can be highly heterogeneous due to different local behavior policies. Existing sample complexity scales inverse proportionally to the minimum entry of the stationary state-action occupancy distributions over all agents, requiring that every agent covers the entire state-action space. Instead, we propose a novel importance averaging algorithm, giving larger weights to more frequently visited state-action pairs. The improved sample complexity scales inverse proportionally to the minimum entry of the average stationary state-action occupancy distribution of all agents, thus only requiring the agents collectively cover the entire state-action space, unveiling the blessing of heterogeneity. 
    more » « less
  2. Since reinforcement learning algorithms are notoriously data-intensive, the task of sampling observations from the environment is usually split across multiple agents. However, transferring these observations from the agents to a central location can be prohibitively expensive in terms of the communication cost, and it can also compromise the privacy of each agent’s local behavior policy. In this paper, we consider a federated reinforcement learning framework where multiple agents collaboratively learn a global model, without sharing their individual data and policies. Each agent maintains a local copy of the model and updates it using locally sampled data. Although having N agents enables the sampling of N times more data, it is not clear if it leads to proportional convergence speedup. We propose federated versions of on-policy TD, off-policy TD and Q-learning, and analyze their convergence. For all these algorithms, to the best of our knowledge, we are the first to consider Markovian noise and multiple local updates, and prove a linear convergence speedup with respect to the number of agents. To obtain these results, we show that federated TD and Q-learning are special cases of a general framework for federated stochastic approximation with Markovian noise, and we leverage this framework to provide a unified convergence analysis that applies to all the algorithms. 
    more » « less
  3. null (Ed.)
    In multi-server queueing systems where there is no central queue holding all incoming jobs, job dispatching policies are used to assign incoming jobs to the queue at one of the servers. Classic job dispatching policies such as join-the-shortest-queue and shortest expected delay assume that the service rates and queue lengths of the servers are known to the dispatcher. In this work, we tackle the problem of job dispatching without the knowledge of service rates and queue lengths, where the dispatcher can only obtain noisy estimates of the service rates by observing job departures. This problem presents a novel exploration-exploitation trade-off between sending jobs to all the servers to estimate their service rates, and exploiting the currently known fastest servers to minimize the expected queueing delay. We propose a bandit-based exploration policy that learns the service rates from observed job departures. Unlike the standard multi-armed bandit problem where only one out of a finite set of actions is optimal, here the optimal policy requires identifying the optimal fraction of incoming jobs to be sent to each server. We present a regret analysis and simulations to demonstrate the effectiveness of the proposed bandit-based exploration policy. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)
  7. null (Ed.)