skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Coexistence in diverse communities with higher-order interactions
A central assumption in most ecological models is that the interactions in a community operate only between pairs of species. However, two species may interactively affect the growth of a focal species. Although interactions among three or more species, called higher-order interactions, have the potential to modify our theoretical understanding of coexistence, ecologists lack clear expectations for how these interactions shape community structure. Here we analytically predict and numerically confirm how the variability and strength of higher-order interactions affect species coexistence. We found that as higher-order interaction strengths became more variable across species, fewer species could coexist, echoing the behavior of pairwise models. If interspecific higher-order interactions became too harmful relative to self-regulation, coexistence in diverse communities was destabilized, but coexistence was also lost when these interactions were too weak and mutualistic higher-order effects became prevalent. This behavior depended on the functional form of the interactions as the destabilizing effects of the mutualistic higher-order interactions were ameliorated when their strength saturated with species’ densities. Last, we showed that more species-rich communities structured by higher-order interactions lose species more readily than their species-poor counterparts, generalizing classic results for community stability. Our work provides needed theoretical expectations for how higher-order interactions impact species coexistence in diverse communities.  more » « less
Award ID(s):
2022213
PAR ID:
10462339
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
43
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Most ecological models are based on the assumption that species interact in pairs. Diverse communities, however, can have higher‐order interactions, in which two or more species jointly impact the growth of a third species. A pitfall of the common pairwise approach is that it misses the higher‐order interactions potentially responsible for maintaining natural diversity. Here, we explore the stability properties of systems where higher‐order interactions guarantee that a specified set of abundances is a feasible equilibrium of the dynamics. Even these higher‐order interactions which lead to equilibria do not necessarily produce stable coexistence. Instead, these systems are more likely to be stable when the pairwise interactions are weak or facilitative. Correlations between the pairwise and higher‐order interactions, however, do permit robust coexistence even in diverse systems. Our work not only reveals the challenges in generating stable coexistence through higher‐order interactions but also uncovers interaction patterns that can enable diversity. 
    more » « less
  2. null (Ed.)
    Mutualisms, or reciprocally beneficial interspecific interactions, constitute the foundation of many ecological communities and agricultural systems. Mutualisms come in different forms, from pairwise interactions to extremely diverse communities, and they are continually challenged with exploitation by nonmutualistic community members (exploiters). Thus, understanding how mutualisms persist remains an essential question in ecology. Theory suggests that high species richness and functional redundancy could promote mutualism persistence in complex mutualistic communities. Using a yeast system (Saccharomyces cerevisiae), we experimentally show that communities with the greatest mutualist richness and functional redundancy are nearly two times more likely to survive exploitation than are simple communities. Persistence increased because diverse communities were better able to mitigate the negative effects of competition with exploiters. Thus, large mutualistic networks may be inherently buffered from exploitation. 
    more » « less
  3. Mutualisms, or reciprocally beneficial interspecific interactions, constitute the foundation of many ecological communities and agricultural systems. Mutualisms come in different forms, from pairwise interactions to extremely diverse communities, and they are continually challenged with exploitation by nonmutualistic community members (exploiters). Thus, understanding how mutualisms persist remains an essential question in ecology. Theory suggests that high species richness and functional redundancy could promote mutualism persistence in complex mutualistic communities. Using a yeast system (Saccharomyces cerevisiae), we experimentally show that communities with the greatest mutualist richness and functional redundancy are nearly two times more likely to survive exploitation than are simple communities. Persistence increased because diverse communities were better able to mitigate the negative effects of competition with exploiters. Thus, large mutualistic networks may be inherently buffered from exploitation. 
    more » « less
  4. The relative arrival time of species can affect their interactions and thus determine which species persist in a community. Although this phenomenon, called priority effect, is widespread in natural communities, it is unclear how it depends on the length of growing season. Using a seasonal stage-structured model, we show that differences in stages of interacting species could generate priority effects by altering the strength of stabilizing and equalizing coexistence mechanisms, changing outcomes between exclusion, coexistence and positive frequency dependence. However, these priority effects are strongest in systems with just one or a few generations per season and diminish in systems where many overlapping generations per season dilute the importance of stage-specific interactions. Our model reveals a novel link between the number of generations in a season and the consequences of priority effects, suggesting that consequences of phenological shifts driven by climate change should depend on specific life histories of organisms. 
    more » « less
  5. Abstract The neutral theory of biodiversity explored the structure of a community of ecologically equivalent species. Such species are expected to display community drift dynamics analogous to neutral alleles undergoing genetic drift. While entire communities of species are not ecologically equivalent, recent field experiments have documented the existence of guilds of such neutral species embedded in real food webs.What demographic outcomes of the interactions within and between species in these guilds are expected to produce ecological drift versus coexistence remains unclear. To address this issue, and guide empirical testing, we consider models of a guild of ecologically equivalent competitors feeding on a single resource to explore when community drift should manifest.We show that community drift dynamics only emerge when the density‐dependent effects of each species on itself are identical to its density‐dependent effects on every other guild member. In contrast, if each guild member directly limits itself more than it limits the abundance of other guild members, all species in the guild are coexisting, even though they all are ecologically equivalent with respect to their interactions with species outside the guild (i.e. resources, predators, mutualists). Hence, considering only interspecific ecological differences generating density dependence, and not fully accounting for the preponderance of mechanisms causing intraspecific density dependence, will provide an incomplete picture for segregating between neutrality and coexistence. We also identify critical experiments necessary to disentangle guilds of ecologically equivalent species from those experiencing ecological drift, as well as provide an overview of ways of incorporating a mechanistic basis into studies of species coexistence and neutrality.Identifying these characteristics, and the mechanistic basis underlying community structure, is not merely an exercise in clarifying the semantics of coexistence and neutral theories, but rather reflects key differences that must exist among community members in order to determine how and why communities are structured. 
    more » « less