skip to main content


Title: Neighborhood-scale air quality, public health, and equity implications of multi-modal vehicle electrification
Abstract

Electric vehicles (EVs) constitute just a fraction of the current U.S. transportation fleet; however, EV market share is surging. EV adoption reduces on-road transportation greenhouse gas emissions by decoupling transportation services from petroleum, but impacts on air quality and public health depend on the nature and location of vehicle usage and electricity generation. Here, we use a regulatory-grade chemical transport model and a vehicle-to-electricity generation unit electricity assignment algorithm to characterize neighborhood-scale (∼1 km) air quality and public health benefits and tradeoffs associated with a multi-modal EV transition. We focus on a Chicago-centric regional domain wherein 30% of the on-road transportation fleet is instantaneously electrified and changes in on-road, refueling, and power plant emissions are considered. We find decreases in annual population-weighted domain mean NO2(−11.83%) and PM2.5(−2.46%) with concentration reductions of up to −5.1 ppb and −0.98µg m−3in urban cores. Conversely, annual population-weighted domain mean maximum daily 8 h average ozone (MDA8O3) concentrations increase +0.64%, with notable intra-urban changes of up to +2.3 ppb. Despite mixed pollutant concentration outcomes, we find overall positive public health outcomes, largely driven by NO2concentration reductions that result in outsized mortality rate reductions for people of color, particularly for the Black populations within our domain.

 
more » « less
NSF-PAR ID:
10462418
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Environmental Research: Infrastructure and Sustainability
Volume:
3
Issue:
3
ISSN:
2634-4505
Page Range / eLocation ID:
Article No. 035007
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Vehicle electrification is a common climate change mitigation strategy, with policymakers invoking co‐beneficial reductions in carbon dioxide (CO2) and air pollutant emissions. However, while previous studies of U.S. electric vehicle (EV) adoption consistently predict CO2mitigation benefits, air quality outcomes are equivocal and depend on policies assessed and experimental parameters. We analyze climate and health co‐benefits and trade‐offs of six U.S. EV adoption scenarios: 25% or 75% replacement of conventional internal combustion engine vehicles, each under three different EV‐charging energy generation scenarios. We transfer emissions from tailpipe to power generation plant, simulate interactions of atmospheric chemistry and meteorology using the GFDL‐AM4 chemistry climate model, and assess health consequences and uncertainties using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program Community Edition (BenMAP‐CE). We find that 25% U.S. EV adoption, with added energy demand sourced from the present‐day electric grid, annually results in a ~242 M ton reduction in CO2emissions, 437 deaths avoided due to PM2.5reductions (95% CI: 295, 578), and 98 deaths avoided due to lesser ozone formation (95% CI: 33, 162). Despite some regions experiencing adverse health outcomes, ~$16.8B in damages avoided are predicted. Peak CO2reductions and health benefits occur with 75% EV adoption and increased emission‐free energy sources (~$70B in damages avoided). When charging‐electricity from aggressive EV adoption is combustion‐only, adverse health outcomes increase substantially, highlighting the importance of low‐to‐zero emission power generation for greater realization of health co‐benefits. Our results provide a more nuanced understanding of the transportation sector's climate change mitigation‐health impact relationship.

     
    more » « less
  2. Abstract

    Electric vehicle (EV) adoption promises potential air pollutant and greenhouse gas (GHG) reduction co‐benefits. As such, China has aggressively incentivized EV adoption, however much remains unknown with regard to EVs’ mitigation potential, including optimal vehicle type prioritization, power generation contingencies, effects of Clean Air regulations, and the ability of EVs to reduce acute impacts of extreme air quality events. Here, we present a suite of scenarios with a chemistry transport model that assess the potential co‐benefits of EVs during an extreme winter air quality event. We find that regardless of power generation source, heavy‐duty vehicle (HDV) electrification consistently improves air quality in terms of NO2and fine particulate matter (PM2.5), potentially avoiding 562 deaths due to acute pollutant exposure during the infamous January 2013 pollution episode (∼1% of total premature mortality). However, HDV electrification does not reduce GHG emissions without enhanced emission‐free electricity generation. In contrast, due to differing emission profiles, light‐duty vehicle (LDV) electrification in China consistently reduces GHG emissions (∼2 Mt CO2), but results in fewer air quality and human health improvements (145 avoided deaths). The calculated economic impacts for human health endpoints and CO2reductions for LDV electrification are nearly double those of HDV electrification in present‐day (155M vs. 87M US$), but are within ∼25% when enhanced emission‐free generation is used to power them. Overall, we find only a modest benefit for EVs to ameliorate severe wintertime pollution events, and that continued emission reductions in the power generation sector will have the greatest human health and economic benefits.

     
    more » « less
  3. Abstract

    Scaling up electric vehicles (EVs) provides an avenue to mitigate both carbon emissions and air pollution from road transport. The benefits of EV adoption for climate, air quality, and health have been widely documented. Yet, evidence on the distribution of these impacts has not been systematically reviewed, despite its central importance to ensure a just and equitable transition. Here, we perform a systematic review of recent EV studies that have examined the spatial distribution of the emissions, air pollution, and health impacts, as an important aspect of the equity implications. Using the Context-Interventions-Mechanisms-Outcome framework with a two-step search strategy, we narrowed down to 47 papers that met our inclusion criteria for detailed review and synthesis. We identified two key factors that have been found to influence spatial distributions. First, the cross-sectoral linkages may result in unintended impacts elsewhere. For instance, the generation of electricity to charge EVs, and the production of batteries and other materials to manufacture EVs could increase the emissions and pollution in locations other than where EVs are adopted. Second, since air pollution and health are local issues, additional location-specific factors may play a role in determining the spatial distribution, such as the wind transport of pollution, and the size and vulnerability of the exposed populations. Based on our synthesis of existing evidence, we highlight two important areas for further research: (1) fine-scale pollution and health impact assessment to better characterize exposure and health disparities across regions and population groups; and (2) a systematic representation of the EV value chain that captures the linkages between the transport, power and manufacturing sectors as well as the regionally-varying activities and impacts.

     
    more » « less
  4. Abstract

    Global economic development and urbanization during the past two decades have driven the increases in demand of personal and commercial vehicle fleets, especially in developing countries, which has likely resulted in changes in year-to-year vehicle tailpipe emissions associated with aerosols and trace gases. However, long-term trends of impacts of global gasoline and diesel emissions on air quality and human health are not clear. In this study, we employ the Community Earth System Model in conjunction with the newly developed Community Emissions Data System as anthropogenic emission inventory to quantify the long-term trends of impacts of global gasoline and diesel emissions on ambient air quality and human health for the period of 2000–2015. Global gasoline and diesel emissions contributed to regional increases in annual mean surface PM2.5(particulate matter with aerodynamic diameters ⩽2.5μm) concentrations by up to 17.5 and 13.7µg m−3, and surface ozone (O3) concentrations by up to 7.1 and 7.2 ppbv, respectively, for 2000–2015. However, we also found substantial declines of surface PM2.5and O3concentrations over Europe, the US, Canada, and China for the same period, which suggested the co-benefits of air quality and human health from improving gasoline and diesel fuel quality and tightening vehicle emissions standards. Globally, we estimate the mean annual total PM2.5- and O3-induced premature deaths are 139 700–170 700 for gasoline and 205 200–309 300 for diesel, with the corresponding years of life lost of 2.74–3.47 and 4.56–6.52 million years, respectively. Diesel and gasoline emissions create health-effect disparities between the developed and developing countries, which are likely to aggravate afterwards.

     
    more » « less
  5. Abstract

    The transportation sector is the largest contributor to CO2emissions and a major source of criteria air pollutants in the United States. The impact of climate change and that of air pollution differ in space and time, but spatially-explicit, systematic evaluations of the effectiveness of alternative fuels and advanced vehicle technologies in mitigating both climate change and air pollution are lacking. In this work, we estimate the life cycle monetized damages due to greenhouse gas emissions and criteria air pollutant emissions for different types of passenger-moving vehicles in the United States. We find substantial spatial variability in the monetized damages for all fuel-vehicle technologies studied. None of the fuel-vehicle technologies leads simultaneously to the lowest climate change damages and the lowest air pollution damages across all U.S. counties. Instead, the fuel-vehicle technology that best mitigates climate change in one region is different from that for the best air quality (i.e. the trade-off between decarbonization and air pollution mitigation). For example, for the state of Pennsylvania, battery-electric cars lead to the lowest population-weighted-average climate change damages (a climate change damage of 0.87 cent/mile and an air pollution damage of 1.71 cent/mile). In contrast, gasoline hybrid-electric cars lead to the lowest population-weighted-average air pollution damages (a climate change damage of 0.92 cent/mile and an air pollution damage of 0.77 cent/mile). Vehicle electrification has great potential to reduce climate change damages but may increase air pollution damages substantially in regions with high shares of coal-fired power plants compared to conventional vehicles. However, clean electricity grid could help battery electric vehicles to achieve low damages in both climate change and air pollution.

     
    more » « less