Abstract Vehicle electrification is a common climate change mitigation strategy, with policymakers invoking co‐beneficial reductions in carbon dioxide (CO2) and air pollutant emissions. However, while previous studies of U.S. electric vehicle (EV) adoption consistently predict CO2mitigation benefits, air quality outcomes are equivocal and depend on policies assessed and experimental parameters. We analyze climate and health co‐benefits and trade‐offs of six U.S. EV adoption scenarios: 25% or 75% replacement of conventional internal combustion engine vehicles, each under three different EV‐charging energy generation scenarios. We transfer emissions from tailpipe to power generation plant, simulate interactions of atmospheric chemistry and meteorology using the GFDL‐AM4 chemistry climate model, and assess health consequences and uncertainties using the U.S. Environmental Protection Agency Benefits Mapping Analysis Program Community Edition (BenMAP‐CE). We find that 25% U.S. EV adoption, with added energy demand sourced from the present‐day electric grid, annually results in a ~242 M ton reduction in CO2emissions, 437 deaths avoided due to PM2.5reductions (95% CI: 295, 578), and 98 deaths avoided due to lesser ozone formation (95% CI: 33, 162). Despite some regions experiencing adverse health outcomes, ~$16.8B in damages avoided are predicted. Peak CO2reductions and health benefits occur with 75% EV adoption and increased emission‐free energy sources (~$70B in damages avoided). When charging‐electricity from aggressive EV adoption is combustion‐only, adverse health outcomes increase substantially, highlighting the importance of low‐to‐zero emission power generation for greater realization of health co‐benefits. Our results provide a more nuanced understanding of the transportation sector's climate change mitigation‐health impact relationship.
more »
« less
Understanding the Health Impacts of Vehicular Emissions in South Florida: A Comprehensive Analysis
South Florida is famous for its diverse cultural scene and year-round sunshine. This success, however, has not been without its consequences. While the region enjoys economic prosperity, the hidden cost of deteriorating air quality and adverse health effects from vehicle emissions necessitates urgent attention. Electric vehicles (EVs) have emerged as a potential solution, promising reduced emissions, and increased energy efficiency. However, the intricate life cycle emissions associated with EV energy production raise questions about their net benefits. Using predictive modeling and historical data, the study forecasts emissions trajectories and assesses their health implications. Results indicate a substantial reduction in pollutants like PM2.5 and NOx by 2050, particularly in counties with higher vehicle miles traveled (VMT). However, challenges remain, such as Broward County’s heightened dependence on polluting electricity sources for EV charging, leading to increased SO2 emissions and public health costs. The analysis underscores the importance of transitioning to cleaner energy sources, highlighting the potential benefits of renewable resources in reducing emissions and improving public health outcomes. By incorporating comprehensive data and predictive models, this study provides valuable insights for policymakers and communities, advocating for a concerted effort towards sustainable transportation solutions. Ultimately, the findings emphasize the necessity of proactive measures to mitigate the adverse effects of vehicle emissions and foster a healthier, more sustainable future for South Florida.
more »
« less
- Award ID(s):
- 2150387
- PAR ID:
- 10613598
- Publisher / Repository:
- FIU Undergraduate Research Journal
- Date Published:
- Journal Name:
- FIU Undergraduate Research Journal
- Volume:
- 2
- Issue:
- 1
- ISSN:
- 2836-9475
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Electric vehicle (EV) adoption promises potential air pollutant and greenhouse gas (GHG) reduction co‐benefits. As such, China has aggressively incentivized EV adoption, however much remains unknown with regard to EVs’ mitigation potential, including optimal vehicle type prioritization, power generation contingencies, effects of Clean Air regulations, and the ability of EVs to reduce acute impacts of extreme air quality events. Here, we present a suite of scenarios with a chemistry transport model that assess the potential co‐benefits of EVs during an extreme winter air quality event. We find that regardless of power generation source, heavy‐duty vehicle (HDV) electrification consistently improves air quality in terms of NO2and fine particulate matter (PM2.5), potentially avoiding 562 deaths due to acute pollutant exposure during the infamous January 2013 pollution episode (∼1% of total premature mortality). However, HDV electrification does not reduce GHG emissions without enhanced emission‐free electricity generation. In contrast, due to differing emission profiles, light‐duty vehicle (LDV) electrification in China consistently reduces GHG emissions (∼2 Mt CO2), but results in fewer air quality and human health improvements (145 avoided deaths). The calculated economic impacts for human health endpoints and CO2reductions for LDV electrification are nearly double those of HDV electrification in present‐day (155M vs. 87M US$), but are within ∼25% when enhanced emission‐free generation is used to power them. Overall, we find only a modest benefit for EVs to ameliorate severe wintertime pollution events, and that continued emission reductions in the power generation sector will have the greatest human health and economic benefits.more » « less
-
The rise of Electric Vehicles (EVs) has presented a promising solution to the environmental and resource challenges posed by conventional combustion engine vehicles. With their potential to significantly reduce greenhouse gas emissions and enhance air quality, the adoption of EVs is essential for a more sustainable future. However, despite their benefits, widespread adoption remains limited. Thus, understanding the key factors that impact consumer adoption is crucial for promoting their use. This study aims to identify and analyze the various determinants that influence EV adoption, including social and demographic, political, economic, technological, and environmental factors. The findings offer valuable insights into the most significant barriers to EV adoption and provide potential strategies to encourage their use. Furthermore, this study examines the feasibility and sustainability of integrating EVs with public transportation via park-and-ride stations, emphasizing the importance of promoting sustainable transportation given the continued reliance on personal vehicles for park-and-ride travel.more » « less
-
Abstract China, the world’s largest greenhouse gas emitter in 2022, aims to achieve carbon neutrality by 2060. The power sector will play a major role in this decarbonization process due to its current reliance on coal. Prior studies have quantified air quality co-benefits from decarbonization or investigated pathways to eliminate greenhouse gas emissions from the power sector. However, few have jointly assessed the potential impacts of accelerating decarbonization on electric power systems and public health. Additionally, most analyses have treated air quality improvements as co-benefits of decarbonization, rather than a target during decarbonization. Here, we explore future energy technology pathways in China under accelerated decarbonization scenarios with a power system planning model that integrates carbon, pollutant, and health impacts. We integrate the health effects of power plant emissions into the power system decision-making process, quantifying the public health impacts of decarbonization under each scenario. We find that compared with a reference decarbonization pathway, a stricter cap (20% lower emissions than the reference pathway in each period) on carbon emissions would yield significant co-benefits to public health, leading to a 22% reduction in power sector health impacts. Although extra capital investment is required to achieve this low emission target, the value of climate and health benefits would exceed the additional costs, leading to $824 billion net benefits from 2021 to 2050. Another accelerated decarbonization pathway that achieves zero emissions five years earlier than the reference case would result in lower net benefits due to higher capital costs during earlier decarbonization periods. Treating air pollution impacts as a target in decarbonization can further mitigate both CO2emissions and negative health effects. Alternative low-cost solutions also show that small variations in system costs can result in significantly different future energy portfolios, suggesting that diverse decarbonization pathways are viable.more » « less
-
Abstract Electric vehicles (EVs) constitute just a fraction of the current U.S. transportation fleet; however, EV market share is surging. EV adoption reduces on-road transportation greenhouse gas emissions by decoupling transportation services from petroleum, but impacts on air quality and public health depend on the nature and location of vehicle usage and electricity generation. Here, we use a regulatory-grade chemical transport model and a vehicle-to-electricity generation unit electricity assignment algorithm to characterize neighborhood-scale (∼1 km) air quality and public health benefits and tradeoffs associated with a multi-modal EV transition. We focus on a Chicago-centric regional domain wherein 30% of the on-road transportation fleet is instantaneously electrified and changes in on-road, refueling, and power plant emissions are considered. We find decreases in annual population-weighted domain mean NO2(−11.83%) and PM2.5(−2.46%) with concentration reductions of up to −5.1 ppb and −0.98µg m−3in urban cores. Conversely, annual population-weighted domain mean maximum daily 8 h average ozone (MDA8O3) concentrations increase +0.64%, with notable intra-urban changes of up to +2.3 ppb. Despite mixed pollutant concentration outcomes, we find overall positive public health outcomes, largely driven by NO2concentration reductions that result in outsized mortality rate reductions for people of color, particularly for the Black populations within our domain.more » « less
An official website of the United States government

