skip to main content


Title: xASP: An Explanation Generation System for Answer Set Programming
In this paper, we present a system, called xASP, for generating explanations that explain why an atom belongs to (or does not belong to) an answer set of a given program. The system can generate all possible explanations for a query without the need to simplify the program before computing explanations, i.e., it works with non-ground programs. These properties distinguish xASP from existing systems such as πš‘π™²πš•πš’πš—πšπš˜ , π™³πš’πšœπšŒπ™°πš‚π™Ώ , exp(ASP𝑐) , and s(CASP) , which also generate explanations for queries to logic programs under the answer set semantics but simplify and ground the programs (the three systems πš‘π™²πš•πš’πš—πšπš˜ , π™³πš’πšœπšŒπ™°πš‚π™Ώ , exp(ASP𝑐) ) or do not always generate all possible explanations (the system s(CASP) ). In addition, the output of xASP is insensitive to syntactic variations such as the order conditions and the order of rules, which is also different from the output of s(CASP) .  more » « less
Award ID(s):
1757207
NSF-PAR ID:
10462534
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Lecture notes in computer science
ISSN:
0302-9743
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. FOLD-R is an automated inductive learning algorithm for learning default rules for mixed (numerical and categorical) data. It generates an (explainable) normal logic program (NLP) rule set for classification tasks. We present an improved FOLD-R algorithm, called FOLD-R++, that significantly increases the efficiency and scalability of FOLD-R by orders of magnitude. FOLD-R++ improves upon FOLD-R without compromising or losing information in the input training data during the encoding or feature selection phase. The FOLD-R++ algorithm is competitive in performance with the widely-used XGBoost algorithm, however, unlike XGBoost, the FOLD-R++ algorithm produces an explainable model. FOLD-R++ is also competitive in performance with the RIPPER system, however, on large datasets FOLD-R++ outperforms RIPPER. We also create a powerful tool-set by combining FOLD-R++ with s(CASP)β€”a goal-directed answer set programming (ASP) execution engineβ€”to make predictions on new data samples using the normal logic program generated by FOLD-R++. The s(CASP) system also produces a justification for the prediction. Experiments presented in this paper show that our improved FOLD-R++ algorithm is a significant improvement over the original design and that the s(CASP) system can make predictions in an efficient manner as well. 
    more » « less
  2. Securing applications on untrusted platforms can involve protection against legitimate end-users who act in the role of malicious reverse engineers and hackers. Such adversaries have access to the full execution environment of programs, whether the program comes in the form of software or hardware. In this paper, we consider the nature of obfuscating algorithms that perform iterative, step-wise transformation of programs into more complex forms that are intended to increase the complexity (time, resources) for malicious reverse engineers. We consider simple Boolean logic programs as the domain of interest and examine a specific transformation technique known as iterative sub-circuit selection and replacement (ISR), which represents a practical, syntactic approach for obfuscation. Specifically, we focus on improving the security of ISR by maximizing the flexibility and potential security of the replacement step of the algorithm which can be formulated in the following question: given a selection of Boolean logic gates (i.e., a sub-circuit), how can we produce a semantically equivalent (polymorphic) version of the sub-circuit such that the distribution of potential replacements represents a random, uniform distribution from the set of all possible replacements. This practical question is related to the theoretic study of indistinguishability obfuscation, where a transformer for a class of circuits guarantees that given any two semantically equivalent circuits from the class, the distribution of variants from their obfuscation are computationally indistinguishable. Ideally, polymorphic circuits that follow a random, uniform distribution provide stronger protection against malicious analyzers that target identification of distinct patterns as a basis for deobfuscation and simplification. In this paper, we introduce a novel approach for polymorphic circuit replacement called random Boolean logic expansion (RBLE), which applies Boolean logic laws (of reduction) in reverse. We compare this approach against another proposed method of polymorphic replacement that relies on static circuit libraries. As a contribution, we show the strengths and weaknesses of each approach, examine initial results from empirical studies to estimate the uniformity of polymorphic distributions, and provide the argument for how such algorithms can be readily applied in software contexts. RBLE provides a unique method to generate polymorphic variants of arbitrary input, output, and gate size. We report initial findings for studying variants produced by this method and, from empirical evaluation, show that RBLE has promise for generating distributions of unique, uniform circuits when size is unconstrained, but for targeted size distributions, the approach requires some adjustment in order to reach potential circuit variants. 
    more » « less
  3. In this paper, we study the β€œdecoding” problem for discrete-time, stochastic hybrid systems with linear dynamics in each mode. Given an output trace of the system, the decoding problem seeks to construct a sequence of modes and states that yield a trace β€œas close as possible” to the original output trace. The decoding problem generalizes the state estimation problem, and is applicable to hybrid systems with non-determinism. The decoding problem is NP-complete, and can be reduced to solving a mixed-integer linear program (MILP). In this paper, we decompose the decoding problem into two parts: (a) finding a sequence of discrete modes and transitions; and (b) finding corresponding continuous states for the mode/transition sequence. In particular, once a sequence of modes/transitions is fixed, the problem of β€œfilling in” the continuous states is performed by a linear programming problem. In order to support the decomposition, we β€œcover” the set of all possible mode/transition sequences by a finite subset. We use well-known probabilistic arguments to justify a choice of cover with high confidence and design randomized algorithms for finding such covers. Our approach is demonstrated on a series of benchmarks, wherein we observe that relatively tiny fraction of the possible mode/transition sequences can be used as a cover. Furthermore, we show that the resulting linear programs can be solved rapidly by exploiting the tree structure of the set cover. 
    more » « less
  4. Abstract Constraint answer set programming or CASP, for short, is a hybrid approach in automated reasoning putting together the advances of distinct research areas such as answer set programming, constraint processing, and satisfiability modulo theories. CASP demonstrates promising results, including the development of a multitude of solvers: acsolver, clingcon, ezcsp, idp, inca, dingo, mingo, aspmt2smt, clingo[l,dl], and ezsmt . It opens new horizons for declarative programming applications such as solving complex train scheduling problems. Systems designed to find solutions to constraint answer set programs can be grouped according to their construction into, what we call, integrational or translational approaches. The focus of this paper is an overview of the key ingredients of the design of constraint answer set solvers drawing distinctions and parallels between integrational and translational approaches. The paper also provides a glimpse at the kind of programs its users develop by utilizing a CASP encoding of Traveling Salesman problem for illustration. In addition, we place the CASP technology on the map among its automated reasoning peers as well as discuss future possibilities for the development of CASP. 
    more » « less
  5. A Reduction – an accumulation over a set of values, using an associative and commutative operator – is a common computation in many numerical computations, including scientific computations, machine learning, computer vision, and financial analytics. Contemporary polyhedral-based compilation techniques make it possible to optimize reductions, such as prefix sums, in which each component of the reduction’s output potentially shares computation with another component in the reduction. Therefore an optimizing compiler can identify the computation shared between multiple components and generate code that computes the shared computation only once. These techniques, however, do not support reductions that – when phrased in the language of the polyhedral model – span multiple dependent statements. In such cases, existing approaches can generate incorrect code that violates the data dependences of the original, unoptimized program. In this work, we identify and formalize the optimization of dependent reductions as an integer bilinear program. We present a heuristic optimization algorithm that uses an affine sequential schedule of the program to determine how to simplfy reductions yet still preserve the program’s dependences. We demonstrate that the algorithm provides optimal complexity for a set of benchmark programs from the literature on probabilistic inference algorithms, whose performance critically relies on simplifying these reductions. The complexities for 10 of the 11 programs improve siginifcantly by factors at least of the sizes of the input data, which are in the range of 10 4 to 10 6 for typical real application inputs. We also confirm the significance of the improvement by showing speedups in wall-clock time that range from 1.1x to over 10 6 x. 
    more » « less