skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Virtual Reality and Construction Industry: Review of Current State-of-Practice and Future Applications
Virtual reality systems are making significant headway in the construction industry for design, training, planning, and management applications. With research continuing to show the virtues of adopting virtual reality in blue-collar occupational environments, the industry is making rapid and substantial investments to facilitate institutional innovation that supports adoption. Despite a push from both the research and professional community, the widespread adoption of virtual reality remains hindered because details on practical application remains unclear. This study used a social constructionist approach to capture the perspectives of industry professionals on the challenges and opportunities associated with use of virtual reality for construction safety applications. The interviews with professionals revealed that the application of virtual reality in the workplace is currently in its infancy stage and lacks standardization primarily due to scalability and quality concerns. Additionally, the cost associated with large-scale adoption also remains prohibitive to date. The experiential learnings of professionals are used in this paper to determine where future research and practice efforts need to focus to pave the way for future of virtual reality within the construction industry.  more » « less
Award ID(s):
1917763
PAR ID:
10462603
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Construction Research Congress 2022
Page Range / eLocation ID:
174-184
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Drones are increasingly being utilized in the construction industry, offering a wide range of applications. As these drones have to work with or alongside construction professionals, this integration could pose new safety risks and psychological impacts on construction professionals. Hence, it is important to understand their perceptions and attitudes towards drones and evaluate the cognitive demand of working with or near drones. Limited research has explored individuals' perceptions of drones, particularly when engaged in construction activities at job sites. This study specifically targets construction students, the future professionals in the field, to understand their responses to drone interactions on job sites. An immersive virtual reality construction site was developed using a VR game engine, allowing construction students to interact with drones while engaging in typical construction activities. Through a user-centered experiment, the influence of drone presence on construction students' attitude, cognitive workload, and perceived safety risk was evaluated. The results suggest that presence of drones did not significantly elevate cognitive load or foster significantly negative attitudes among construction students. Instead, they perceived only mild safety risks, suggesting a general acceptance and adaptability towards drone technology in construction settings. 
    more » « less
  2. null (Ed.)
    Advancements in Artificial Intelligence (AI), Information Technology, Augmented Reality (AR) and Virtual Reality (VR), and Robotic Automation is transforming jobs in the Architecture, Engineering and Construction (AEC) industries. However, it is also expected that these technologies will lead to job displacement, alter skill profiles for existing jobs, and change how people work. Therefore, preparing the workforce for an economy defined by these technologies is imperative. This ongoing research focuses on developing an immersive learning training curriculum to prepare the future workforce of the building industry. In this paper we are demonstrating a prototype of a mobile AR application to deliver lessons for training in robotic automation for construction industry workers. The application allows a user to interact with a virtual robot manipulator to learn its basic operations. The goal is to evaluate the effectiveness of the AR application by gauging participants' performance using pre and post surveys. 
    more » « less
  3. Yan, C; Chai, H; Sun, T; Yuan, PF (Ed.)
    Abstract. The building industry is facing environmental, technological, and economic challenges, placing significant pressure on preparing the workforce for Industry 4.0 needs. The fields of Architecture, Engineering, and Construction (AEC) are being reshaped by robotics technologies which demand new skills and creating disruptive change to job markets. Addressing the learning needs of AEC students, professionals, and industry workers is critical to ensuring the competitiveness of the future workforce. In recent years advancements in Information Technology, Augmented Reality (AR), Virtual Reality (VR), and Artificial Intelligence (AI) have led to new research and theories on virtual learning environments. In the AEC fields researchers are beginning to rethink current robotics training to counteract costly and resource-intensive in-person learning. However, much of this work has been focused on simulation physics and has yet to adequately address how to engage AEC learners with different learning abilities, styles, and diverse backgrounds.This paper presents the advantages and difficulties associated with using new technologies to develop virtual reality (VR) learning games for robotics. It describes an ongoing project for creating performance driven curriculum. Drawing on the Constructivist Learning Theory, the affordances of Adaptive Learning Systems, and data collection methods from the VR game environment, the project provides a customized and performance-oriented approach to carrying out practical robotics tasks in real-world scenarios. 
    more » « less
  4. Dawood, Nashwan; Rahimian, Farzad P.; Seyedzadeh, Saleh; Sheikhkhoshkar, Moslem (Ed.)
    The growth in the adoption of sensing technologies in the construction industry has triggered the need for graduating construction engineering students equipped with the necessary skills for deploying the technologies. One obstacle to equipping students with these skills is the limited opportunities for hands-on learning experiences on construction sites. Inspired by opportunities offered by mixed reality, this paper presents the development of a holographic learning environment that can afford learners an experiential opportunity to acquire competencies for implementing sensing systems on construction projects. The interactive holographic learning environment is built upon the notions of competence-based and constructivist learning. The learning contents of the holographic learning environment are driven by characteristics of technical competencies identified from the results of an online survey, and content analysis of industry case studies. This paper presents a competency characteristics model depicting the key sensing technologies, applications and resources needed to facilitate the design of the holographic learning environment. A demonstrative scenario of the application of a virtual laser scanner for measuring volume of stockpiles is utilized to showcase the potential of the learning environment. A taxonomic model of the operational characteristics of the virtual laser scanner represented within the holographic learning environment is also presented. This paper contributes to the body of knowledge by advancing immersive experiential learning discourses previously confined by technology. It opens a new avenue for both researchers and practitioners to further investigate the opportunities offered by mixed reality for future workforce development. 
    more » « less
  5. Purpose The architecture, engineering and construction (AEC) industry exists in a dynamic environment and requires several stakeholders to communicate regularly. However, evidence indicates current communication practices fail to meet the requirements of increasingly complex projects. With the advent of Industry 4.0, a trend is noted to create a digital communication environment between stakeholders. Identified as a central technology in Industry 4.0, virtual reality (VR) has the potential to supplement current communication and facilitate the digitization of the AEC industry. This paper aims to explore how VR has been applied and future research directions for communication purpose. Design/methodology/approach This research follows a systematic literature assessment methodology to summarize the results of 41 research articles in the last 15 years and outlines the applications of VR in facilitating communication in the AEC domain. Findings Relevant VR applications are mainly found in building inspection, facility management, safety training, construction education and design and review. Communication tools and affordance are provided or built in several forms: text-based tools, voice chat tool, visual sharing affordance and avatars. Objective and subjective communication assessments are observed from those publications. Originality/value This review contributes to identifying the recent employment areas and future research directions of VR to facilitate communication in the AEC domain. The outcome can be a practical resource to guide both industry professionals and researchers to recognize the potentials of VR and will ultimately facilitate the creation of digital construction environments. 
    more » « less