The local compositional heterogeneity associated with the short‐range ordering of Mg and Nb in PbMg1/3Nb2/3O3(PMN) is correlated with its characteristic relaxor ferroelectric behavior. Fully ordered PMN is not prepared as a bulk material. This work examines the relaxor behavior in PMN thin films grown at temperatures below 1073 K by artificially reducing the degree of disorder via synthesis of heterostructures with alternate layers of Pb(Mg2/3Nb1/3)O3and PbNbO3, as suggested by the random‐site model. 100 nm thick, phase‐pure films are grown epitaxially on (111) SrTiO3substrates using alternate target timed pulsed‐laser deposition of Pb(Mg2/3Nb1/3)O3and PbNbO3targets with 20% excess Pb. Selected area electron diffraction confirms the emergence of (1/2, 1/2, 1/2) superlattice spots with randomly distributed ordered domains as large as ≈150 nm. These heterostructures exhibit a dielectric constant of 800, loss tangents of ≈0.03 and 2× remanent polarization of ≈11 µC cm−2at room temperature. Polarization–electric field hysteresis loops, Rayleigh data, and optical second‐harmonic generation measurements are consistent with the development of ferroelectric domains below 140 K. Temperature‐dependent permittivity measurements demonstrate reduced frequency dispersion compared to short range ordered PMN films. This work suggests a continuum between normal and relaxor ferroelectric behavior in the engineered PMN thin films.
more » « less- Award ID(s):
- 1708615
- NSF-PAR ID:
- 10462640
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Functional Materials
- Volume:
- 29
- Issue:
- 5
- ISSN:
- 1616-301X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)Controlling the growth of complex relaxor ferroelectric thin films and understanding the relationship between biaxial strain–structural domain characteristics are desirable for designing materials with a high electromechanical response. For this purpose, epitaxial thin films free of extended defects and secondary phases are urgently needed. Here, we used optimized growth parameters and target compositions to obtain epitaxial (40–45 nm) 0.67Pb(Mg 1/3 Nb 2/3 )O 3 –0.33PbTiO 3 /(20 nm) SrRuO 3 (PMN–33PT/SRO) heterostructures using pulsed-laser deposition (PLD) on singly terminated SrTiO 3 (STO) and ReScO 3 (RSO) substrates with Re = Dy, Tb, Gd, Sm, and Nd. In situ reflection high-energy electron diffraction (RHEED) and high-resolution X-ray diffraction (HR-XRD) analysis confirmed high-quality and single-phase thin films with smooth 2D surfaces. High-resolution scanning transmission electron microscopy (HR-STEM) revealed sharp interfaces and homogeneous strain further confirming the epitaxial cube-on-cube growth mode of the PMN–33PT/SRO heterostructures. The combined XRD reciprocal space maps (RSMs) and piezoresponse force microscopy (PFM) analysis revealed that the domain structure of the PMN–33PT heterostructures is sensitive to the applied compressive strain. From the RSM patterns, an evolution from a butterfly-shaped diffraction pattern for mildly strained PMN–33PT layers, which is evidence of stabilization of relaxor domains, to disc-shaped diffraction patterns for high compressive strains with a highly distorted tetragonal structure, is observed. The PFM amplitude and phase of the PMN–33PT thin films confirmed the relaxor-like for a strain state below ∼1.13%, while for higher compressive strain (∼1.9%) the irregularly shaped and poled ferroelectric domains were observed. Interestingly, the PFM phase hysteresis loops of the PMN–33PT heterostructures grown on the SSO substrates (strain state of ∼0.8%) exhibited an enhanced coercive field which is about two times larger than that of the thin films grown on GSO and NSO substrates. The obtained results show that epitaxial strain engineering could serve as an effective approach for tailoring and enhancing the functional properties in relaxor ferroelectrics.more » « less
-
null (Ed.)A systematic study of (1− x )Pb(Fe 0.5 Nb 0.5 )O 3 – x BiFeO 3 ( x = 0–0.5) was performed by combining dielectric and electromechanical measurements with structural and microstructural characterization in order to investigate the strengthening of the relaxor properties when adding BiFeO 3 into Pb(Fe 0.5 Nb 0.5 )O 3 and forming a solid solution. Pb(Fe 0.5 Nb 0.5 )O 3 crystalizes in monoclinic symmetry exhibiting ferroelectric-like polarization versus electric field ( P–E ) hysteresis loop and sub-micron-sized ferroelectric domains. Adding BiFeO 3 to Pb(Fe 0.5 Nb 0.5 )O 3 favors a pseudocubic phase and a gradual strengthening of the relaxor behavior of the prepared ceramics. This is indicated by a broadening of the peak in temperature-dependent permittivity, narrowing of P–E hysteresis loops and decreasing size of ferroelectric domains resulting in polar nanodomains for x = 0.20 composition. The relaxor behavior was additionally confirmed by Vogel–Fulcher analysis. For the x ≥ 0.30 compositions, broad high-temperature anomalies are observed in dielectric permittivity versus temperature measurements in addition to the frequency-dispersive peak located close to room temperature. These samples also exhibit pinched P–E hysteresis loops. The observed pinching is most probably related to the reorganization of polar nanoregions under the electric field as shown by synchrotron X-ray diffraction measurements as well as by piezo-response force microscopy analysis, while in part affected by the presence of charged point defects and anti-ferroelectric order, as indicated from rapid cooling experiments and high-resolution transmission electron microscopy, respectively.more » « less
-
Abstract The rapid development of computing applications demands novel low‐energy consumption devices for information processing. Among various candidates, magnetoelectric heterostructures hold promise for meeting the required voltage and power goals. Here, a route to low‐voltage control of magnetism in 30 nm Fe0.5Rh0.5/100 nm 0.68PbMg1/3Nb2/3O3‐0.32PbTiO3(PMN‐PT) heterostructures is demonstrated wherein the magnetoelectric coupling is achieved via strain‐induced changes in the Fe0.5Rh0.5mediated by voltages applied to the PMN‐PT. We describe approaches to achieve high‐quality, epitaxial growth of Fe0.5Rh0.5on the PMN‐PT films and, a methodology to probe and quantify magnetoelectric coupling in small thin‐film devices via studies of the anomalous Hall effect. By comparing the spin‐flop field change induced by temperature and external voltage, the magnetoelectric coupling coefficient is estimated to reach ≈7 × 10−8 s m−1at 325 K while applying a −0.75 V bias.
-
Abstract Electric‐field‐controlled magnetism is of importance in realizing energy efficient, dense and fast information storage and processing. Strain‐mediated converse magneto‐electric (ME) coupling between ferromagnetic and ferroelectric heterostructure shows promise for realizing electric‐controlled magnetism at room temperature and is attracting a number of recent investigations. However, such ME‐effect studies have mainly focus on magnetic metals. In this work, high quality yttrium iron garnet (Y3Fe5O12(YIG)) films are deposited directly onto (100)‐oriented single‐crystal Pb (Mg1/3Nb2/3)0.7Ti0.3O3(PMN‐PT) substrates by means of magnetron sputtering. The electric‐field‐induced polarization switching and lattice strain in the PMN‐PT substrate results in two distinct magnetization states in the YIG film that are nonvolatile and electrically reversible. Because of the direct contact between the YIG and the PMN‐PT substrate, an efficient ME coupling and an almost 90° rotation of the easy axis of the YIG film can be realized. Furthermore, the electric‐field‐controlled hysteresis loop‐like ferromagnetic resonance field shifts and spin pumping signals are observed in Pt/YIG/PMN‐PT heterostructures. Thus, the obstacle is overcome via growing high‐quality YIG thin films directly onto PMN‐PT substrates and an efficient manipulation of magnetism and pure spin current transport by electric field is thereby realized. These findings are instructive for future low‐power magnetic insulator‐based spintronic devices.
-
Abstract Understanding and ultimately controlling the large electromechanical effects in relaxor ferroelectrics requires intimate knowledge of how the local‐polar order evolves under applied stimuli. Here, the biaxial‐strain‐induced evolution of and correlations between polar structures and properties in epitaxial films of the prototypical relaxor ferroelectric 0.68PbMg1/3Nb2/3O3–0.32PbTiO3are investigated. X‐ray diffuse‐scattering studies reveal an evolution from a butterfly‐ to disc‐shaped pattern and an increase in the correlation‐length from ≈8 to ≈25 nm with increasing compressive strain. Molecular‐dynamics simulations reveal the origin of the changes in the diffuse‐scattering patterns and that strain induces polarization rotation and the merging of the polar order. As the magnitude of the strain is increased, relaxor behavior is gradually suppressed but is not fully quenched. Analysis of the dynamic evolution of dipole alignment in the simulations reveals that, while, for most unit‐cell chemistries and configurations, strain drives a tendency toward more ferroelectric‐like order, there are certain unit cells that become more disordered under strain, resulting in stronger competition between ordered and disordered regions and enhanced overall susceptibilities. Ultimately, this implies that deterministic creation of specific local chemical configurations could be an effective way to enhance relaxor performance.