skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 1, 2026

Title: Complexation of diserinol isophthalamide with phosphorylated biomolecules in electrospray ionization mass spectrometry
Electrospray ionization (ESI) enables gentle transfer of biomolecules from solution to vacuum, facilitating the study of biomolecular structure under highly controlled conditions. However, biomolecules are desolvated during the ESI process, and the loss of ionic hydrogen bonds to solvent molecules can drive structural rearrangement, most prominently at solvent-exposed charge sites. Microsolvation reagents can bind to these bare charge sites in ESI mass spectrometry (ESI–MS) experiments, providing alternative intermolecular interaction partners. Previously, 18-crown-6 was shown to be an effective reagent for binding to cationic monoalkylammonium residues. More recently, diserinol isophthalamide (DIP) was reported as an analogous anionic microsolvation reagent, primarily for carboxylate residues of small model peptides. Herein, we expand upon this work to examine the complexation of DIP, 1,1’-(1,2-phenylene)bis(3-phenylurea) (PBP), and triclocarban (TCC) with molecules featuring a terminal or linking phosphate moiety. Specifically, using ESI–MS, we assess the binding of these reagents with dimethyl phosphate (DMP), cyclic adenosine monophosphate (cAMP), dibutyryl cAMP, RNA dinucleotides ApU and CpG, and angiotensin II phosphate (DRVpYIHPF). For DMP, the smallest target molecule, reagents TCC, PBP and DIP showed favorable adduction. However, for larger systems, PBP and TCC showed reduced complexation, which was attributed to steric hindrance from the terminal aromatic moieties of PBP and the limited hydrogen bonding network of TCC. Overall, of the three reagents, DIP showed the most consistent performance for anionic microsolvation of phosphate groups, facilitating future studies of gas-phase biomolecular structure and the effects of microsolvation.  more » « less
Award ID(s):
2212926
PAR ID:
10554626
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
International Journal of Mass Spectrometry
Volume:
507
ISSN:
1387-3806
Page Range / eLocation ID:
117364
Subject(s) / Keyword(s):
Electrospray Ionization Mass Spectrometry Gas-phase Anion Complexation Hydrogen Bonds Diserinol Isophthalamide
Format(s):
Medium: X Size: 2MB Other: pdf
Size(s):
2MB
Sponsoring Org:
National Science Foundation
More Like this
  1. Osella, Domenico (Ed.)
    Tetrapeptides containing a Cys-Gly-Cys motif and a propensity to adopt a reverse-turn structure were synthesized to evaluate how O-, N-, H-, and aromatic π donor groups might contribute to mercury(II) complex formation. Tetrapeptides Xaa-Cys-Gly-Cys, where Xaa is glycine, glutamate, histidine, or tryptophan, were prepared and reacted with mercury(II) chloride. Their complexation with mercury(II) was studied by spectroscopic methods and computational modeling. UV-vis studies confirmed that mercury(II) binds to the cysteinyl thiolates as indicated by characteristic ligand-to-metal-charge-transfer transitions for bisthiolated S-Hg-S complexes, which correspond to 1 : 1 mercury-peptide complex formation. ESI-MS data also showed dominant 1 : 1 mercury-peptide adducts that are consistent with double deprotonations from the cysteinyl thiols to form thiolates. These complexes exhibited a strong positive circular dichroism band at 210 nm and a negative band at 193 nm, indicating that these peptides adopted a β-turn structure after binding mercury(II). Theoretical studies confirmed that optimized 1 : 1 mercury-peptide complexes adopt β-turns stabilized by intramolecular hydrogen bonds. These optimized structures also illustrate how specific N-terminal side-chain donor groups can assume intramolecular interactions and contribute to complex stability. Fluorescence quenching results provided supporting data that the indole donor group could interact with the coordinated mercury. The results from this study indicate that N-terminal side-chain residues containing carboxylate, imidazole, or indole groups can participate in stabilizing dithiolated mercury(II) complexes. These structural insights on peripheral mercury-peptide interactions provide additional understanding of the chemistry of mercury(II) with side-chain donor groups in peptides. 
    more » « less
  2. Abstract Large‐scale manufacturing of therapeutic cells requires bioreactor technologies with online feedback control enabled by monitoring of secreted biomolecular critical quality attributes (CQAs). Electrospray ionization mass spectrometry (ESI‐MS) is a highly sensitive label‐free method to detect and identify biomolecules, but requires extensive sample preparation before analysis, making online application of ESI‐MS challenging. We present a microfabricated, monolithically integrated device capable of continuous sample collection, treatment, and direct infusion for ESI‐MS detection of biomolecules in high‐salt solutions. The dynamic mass spectrometry probe (DMSP) uses a microfluidic mass exchanger to rapidly condition samples for online MS analysis by removing interfering salts, while concurrently introducing MS signal enhancers to the sample for sensitive biomolecular detection. Exploiting this active conditioning capability increases MS signal intensity and signal‐to‐noise ratio. As a result, sensitivity for low‐concentration biomolecules is significantly improved, and multiple proteins can be detected from chemically complex samples. Thus, the DMSP has significant potential to serve as an enabling portion of a novel analytical tool for discovery and monitoring of CQAs relevant to therapeutic cell manufacturing. 
    more » « less
  3. Computational simulation of biomolecules can provide important insights into protein design, protein-ligand binding interactions, and ab initio biomolecular folding, among other applications. Accurate treatment of the solvent environment is essential in such applications, but the use of explicit solvents can add considerable cost. Implicit treatment of solvent effects using a dielectric continuum model is an attractive alternative to explicit solvation since it is able to describe solvation effects without the inclusion of solvent degrees of freedom. Previously, we described the development and parameterization of implicit solvent models for small molecules. Here, we extend the parameterization of the generalized Kirkwood (GK) implicit solvent model for use with biomolecules described by the AMOEBA force field via the addition of corrections to the calculation of effective radii that account for interstitial spaces that arise within biomolecules. These include element-specific pairwise descreening scale factors, a short-range neck contribution to describe the solvent-excluded space between pairs of nearby atoms, and finally tanh-based rescaling of the overall descreening integral. We then apply the AMOEBA/GK implicit solvent to a set of ten proteins and achieve an average coordinate root mean square deviation for the experimental structures of 2.0 Å across 500 ns simulations. Overall, the continued development of implicit solvent models will help facilitate the simulation of biomolecules on mechanistically relevant timescales. 
    more » « less
  4. Abstract Biomolecular recognition including binding of small molecules, peptides and proteins to their target receptors plays a key role in cellular function and has been targeted for therapeutic drug design. However, the high flexibility of biomolecules and slow binding and dissociation processes have presented challenges for computational modelling. Here, we review the challenges and computational approaches developed to characterise biomolecular binding, including molecular docking, molecular dynamics simulations (especially enhanced sampling) and machine learning. Further improvements are still needed in order to accurately and efficiently characterise binding structures, mechanisms, thermodynamics and kinetics of biomolecules in the future. 
    more » « less
  5. Decavanadate (V 10 O 28 6− or V10) is a paradigmatic member of the polyoxidometalate (POM) family, which has been attracting much attention within both materials/inorganic and biomedical communities due to its unique structural and electrochemical properties. In this work we explored the utility of high-resolution electrospray ionization (ESI) mass spectrometry (MS) and ion exclusion chromatography LC/MS for structural analysis of V10 species in aqueous solutions. While ESI generates abundant molecular ions representing the intact V10 species, their isotopic distributions show significant deviations from the theoretical ones. A combination of high-resolution MS measurements and hydrogen/deuterium exchange allows these deviations to be investigated and interpreted as a result of partial reduction of V10. While the redox processes are known to occur in the ESI interface and influence the oxidation state of redox-active analytes, the LC/MS measurements using ion exclusion chromatography provide unequivocal evidence that the mixed-valence V10 species exist in solution, as extracted ion chromatograms representing V10 molecular ions at different oxidation states exhibit distinct elution profiles. The spontaneous reduction of V10 in solution is seen even in the presence of hydrogen peroxide and has not been previously observed. The susceptibility to reduction of V10 is likely to be shared by other redox active POMs. In addition to the molecular V10 ions, a high-abundance ionic signal for a V 10 O 26 2− anion was displayed in the negative-ion ESI mass spectra. None of the V 10 O 26 cations were detected in ESI MS, and only a low-abundance signal was observed for V 10 O 26 anions with a single negative charge, indicating that the presence of abundant V 10 O 26 2− anions in ESI MS reflects gas-phase instability of V 10 O 28 anions carrying two charges. The gas-phase origin of the V 10 O 26 2− anion was confirmed in tandem MS measurements, where mild collisional activation was applied to V10 molecular ions with an even number of hydrogen atoms (H 4 V 10 O 28 2− ), resulting in a facile loss of H 2 O molecules and giving rise to V 10 O 26 2− as the lowest-mass fragment ion. Water loss was also observed for V 10 O 28 anions carrying an odd number of hydrogen atoms ( e.g. , H 5 V 10 O 28 − ), followed by a less efficient and incomplete removal of an OH˙ radical, giving rise to both HV 10 O 26 − and V 10 O 25 − fragment ions. Importantly, at least one hydrogen atom was required for ion fragmentation in the gas phase, as no further dissociation was observed for any hydrogen-free V10 ionic species. The presented workflow allows a distinction to be readily made between the spectral features revealing the presence of non-canonical POM species in the bulk solution from those that arise due to physical and chemical processes occurring in the ESI interface and/or the gas phase. 
    more » « less