Abstract The 2020 Atlantic hurricane season was extremely active and included, as of early November, six hurricanes that made landfall in the United States during the global coronavirus disease 2019 (COVID‐19) pandemic. Such an event would necessitate a large‐scale evacuation, with implications for the trajectory of the pandemic. Here we model how a hypothetical hurricane evacuation from four counties in southeast Florida would affect COVID‐19 case levels. We find that hurricane evacuation increases the total number of COVID‐19 cases in both origin and destination locations; however, if transmission rates in destination counties can be kept from rising during evacuation, excess evacuation‐induced case numbers can be minimized by directing evacuees to counties experiencing lower COVID‐19 transmission rates. Ultimately, the number of excess COVID‐19 cases produced by the evacuation depends on the ability of destination counties to meet evacuee needs while minimizing virus exposure through public health directives. These results are relevant to disease transmission during evacuations stemming from additional climate‐related hazards such as wildfires and floods.
more »
« less
A machine learning approach for predicting hurricane evacuee destination location using smartphone location data
Abstract Evacuation destination choice modeling is an integral aspect of evacuation planning. Outputs from such models are required to estimate the clearance times on which evacuation orders are based. The number of evacuees arriving at each destination also informs allocation of resources and shelter planning. Despite its importance, evacuee destination modeling has not received as much attention as identifying who evacuates and when. In this study, we present a new approach to identify evacuees and determine where they go and when using privacy-enhanced smartphone location data. We demonstrate the method using data from four recent U.S. hurricanes affecting multiple geographies (Florence 2018, Michael 2018, Dorian 2019, and Ida 2021). We then build on those results to develop a new machine learning model that predicts the number of evacuees that move between pairs of metropolitan statistical areas. The machine learning model incorporates hurricane characteristics, which have not been thoroughly exploited by existing methods. The model’s predictive power is comprehensively evaluated through a tenfold cross validation, holdout validation using Hurricane Ida (2021), and comparison with the traditional gravity model. Results suggest that the new model substantially outperforms the traditional gravity model across all performance indicators. Analysis of feature importance in the machine learning model indicates that in addition to distance and population, hurricane characteristics are important in evacuee destination choices.
more »
« less
- Award ID(s):
- 2002589
- PAR ID:
- 10462846
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Computational Urban Science
- Volume:
- 3
- Issue:
- 1
- ISSN:
- 2730-6852
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Individual evacuation decision making has been studied for multiple decades mainly using theory-based approaches, such as random utility theory. This study aims to bridge the research gap that no studies have adopted data-driven approaches in modeling the compliance of hurricane evacuees with government-issued evacuation orders using survey data. To achieve this, we conducted a survey in two coastal metropolitan regions of Florida (Jacksonville and Tampa) during the 2020 Atlantic hurricane season. After preprocessing survey data, we employed three supervised learning algorithms with different complexities, namely, multinomial logistic regression, random forest, and support vector classifier, to predict evacuation decisions under various hypothetical hurricane threats. We found that the evacuation decision is mainly determined by people’s perception of hurricane risk regardless of whether the government issued an order; COVID-19 risk is not a major factor in evacuation decisions but influences the destination type choice if an evacuation decision is made. Additionally, past and future evacuation destination types were found to be highly correlated. After comparing the algorithms for predicting evacuation decisions, we found that random forest can achieve satisfactory classification performance, especially for certain categories or when some categories are merged. Finally, we presented a conceptual optimization model to incorporate the data-driven modeling approach for evacuation behavior into a government-led evacuation planning framework to improve the compliance rate.more » « less
-
This paper presents the use of tsunami evacuation drills within a coastal community in the Cascadia Subduction Zone (CSZ) to better understand evacuation behaviors and thus to improve tsunami evacuation preparedness and resilience. Evacuees’ spatial trajectory data were collected by Global Navigation Satellite System (GNSS) embedded in mobile devices. Based on the empirical trajectory data, probability functions were employed to model people’s walking speed during the evacuation drills. An Evacuation Hiking Function (EHF) was established to depict the speed–slope relationship and to inform evacuation modeling and planning. The regression analysis showed that evacuees’ speed was significantly negatively associated with slope, time spent during evacuation, rough terrain surface, walking at night, and distance to destination. We also demonstrated the impacts of milling time on mortality rate based on participants’ empirical evacuation behaviors and a state-of-the-art CSZ tsunami inundation model. Post-drill surveys revealed the importance of the drill as an educational and assessment tool. The results of this study can be used for public education, evacuation plan assessment, and evacuation simulation models. The drill procedures, designs, and the use of technology in data collection provide evidence-driven solutions to tsunami preparedness and inspire the use of drills in other types of natural disasters such as wildfires, hurricanes, volcanoes, and flooding.more » « less
-
Understanding human movements in the face of natural disasters is critical for disaster evacuation planning, management, and relief. Despite the clear need for such work, these studies are rare in the literature due to the lack of available data measuring spatiotemporal mobility patterns during actual disasters. This study explores the spatiotemporal patterns of evacuation travels by leveraging users’ location information from millions of tweets posted in the hours prior and concurrent to Hurricane Matthew. Our analysis yields several practical insights, including the following: (1) We identified trajectories of Twitter users moving out of evacuation zones once the evacuation was ordered and then returning home after the hurricane passed. (2) Evacuation zone residents produced an unusually large number of tweets outside evacuation zones during the evacuation order period. (3) It took several days for the evacuees in both South Carolina and Georgia to leave their residential areas after the mandatory evacuation was ordered, but Georgia residents typically took more time to return home. (4) Evacuees are more likely to choose larger cities farther away as their destinations for safety instead of nearby small cities. (5) Human movements during the evacuation follow a log-normal distribution.more » « less
-
During emergencies, it is often necessary to evacuate vulnerable people to safer places to reduce loss of lives and cope with human suffering. Shelters are publically available places to evacuate, especially for people who do not have any other choices. This paper overviews emergency shelter planning in disaster mitigation and preparation and discusses the need for better responding to people who need to evacuate during emergencies. Recent evacuation studies pay attention to integrating social factors into evacuation modeling for better prediction of evacuation decisions. Our goal is to address the impact of social behavior on the sheltering choices of evacuees and to explore the potential contributions of including social network characteristics in the decision-making process of authorities. We present the shelter utilization problem in South Carolina during Hurricane Florence and discuss an agent-based modeling approach that considers social community structures in modeling the shelter choice behavior of socially connected individualsmore » « less
An official website of the United States government
