Hurricane Irma, in 2017, made an unusual landfall in South Florida and the unpredictability of the hurricane’s path challenged the evacuation process seriously and left many evacuees clueless. It was likely to hit Southeast Florida but suddenly shifted its path to the west coast of the peninsula, where the evacuation process had to change immediately without any time for individual decision-making. As such, this study aimed to develop a methodology to integrate evacuation and storm surge modeling with a case study analysis of Irma hitting Southeast Florida. For this purpose, a coupled storm surge and wave finite element model (ADCIRC+SWAN) was used to determine the inundation zones and roadways with higher inundation risk in Broward, Miami-Dade, and Palm Beach counties in Southeast Florida. This was fed into the evacuation modeling to estimate the regional clearance times and shelter availability in the selected counties. Findings show that it takes approximately three days to safely evacuate the populations in the study area. Modeling such integrated simulations before the hurricane hit the state could provide the information people in hurricane-prone areas need to decide to evacuate or not before the mandatory evacuation order is given.
more »
« less
Characterizing Social Community Structures in Emergency Shelter Planning
During emergencies, it is often necessary to evacuate vulnerable people to safer places to reduce loss of lives and cope with human suffering. Shelters are publically available places to evacuate, especially for people who do not have any other choices. This paper overviews emergency shelter planning in disaster mitigation and preparation and discusses the need for better responding to people who need to evacuate during emergencies. Recent evacuation studies pay attention to integrating social factors into evacuation modeling for better prediction of evacuation decisions. Our goal is to address the impact of social behavior on the sheltering choices of evacuees and to explore the potential contributions of including social network characteristics in the decision-making process of authorities. We present the shelter utilization problem in South Carolina during Hurricane Florence and discuss an agent-based modeling approach that considers social community structures in modeling the shelter choice behavior of socially connected individuals
more »
« less
- Award ID(s):
- 1735139
- PAR ID:
- 10170364
- Date Published:
- Journal Name:
- Proceedings of the 17th International Conference on Information Systems for Crisis Response and Management - ISCRAM 2020
- Page Range / eLocation ID:
- 228-236
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The decisions of whether and how to evacuate during a climate disaster are influenced by a wide range of factors, including emergency messaging, social influences, and sociodemographics. Further complexity is introduced when multiple hazards occur simultaneously, such as a flood evacuation taking place amid a viral pandemic that requires physical distancing. Such multihazard events can necessitate a nuanced navigation of competing decision-making strategies wherein a desire to follow peers is weighed against contagion risks. To better understand these trade-offs, we distributed an online survey during a COVID-19 pandemic surge in July 2020 to 600 individuals in three midwestern and three southern states in the United States with high risk of flooding. In this paper, we estimate a random parameter discrete choice model in both preference space and willingness-to-pay space. The results of our model show that the directionality and magnitude of the influence of peers’ choices of whether and how to evacuate vary widely across respondents. Overall, the decision of whether to evacuate is positively impacted by peer behavior, while the decision of how to evacuate (i.e., ride-type selection) is negatively impacted by peer influence. Furthermore, an increase in flood threat level lessens the magnitude of peer impacts. In terms of the COVID-19 pandemic impacts, respondents who perceive it to be a major health risk are more reluctant to evacuate, but this effect is mitigated by increased flood threat level. These findings have important implications for the design of tailored emergency messaging strategies and the role of shared rides in multihazard evacuations. Specifically, emphasizing or deemphasizing the severity of each threat in a multihazard scenario may assist in: (1) encouraging a reprioritization of competing risk perceptions; and (2) magnifying or neutralizing the impacts of social influence, thereby (3) nudging evacuation decision-making toward a desired outcome.more » « less
-
Public emergencies pose catastrophic casualties and financial losses in densely populated areas, rendering communities such as cities, towns, and universities particularly susceptible due to their intricate environments and high pedestrian traffic. While simulation analysis offers a flexible and cost-effective approach to evaluating evacuation procedures, conventional evacuation models are often limited to specific scenarios and communities, overlooking the diverse range of emergencies and evacuee behaviors. Thus, there is an urgent need for an evacuation model capable of capturing complex structures of communities and modeling evacuee responses to various emergencies. This paper presents a novel approach to simulating responsive evacuation behaviors for multiple emergency situations in public communities through spatial network modeling and multi-agent modeling. Leveraging a community network framework adaptable to different community layouts based on map data, the proposed model employs a multi-agent approach to characterize responsive and decentralized evacuation decision-making. Experimental results show the model’s efficacy in representing pedestrian flow and pedestrians’ reactive behavior across various campuses based on real-world map data. Additionally, the case study highlights the potential of the proposed model to simulate pedestrian dynamics for a variety of heterogeneous emergencies. The proposed community evacuation model holds strong promise for evaluating evacuation policies and providing insights into resilient plans during public emergencies, thereby enhancing community safety.more » « less
-
null (Ed.)Earthquakes along the Cascadia subduction zone would generate a local tsunami that could arrive at coastlines within minutes. Few studies provide empirical evidence to understand the potential behaviors of local residents during this emergency. To fill this knowledge gap, this study examines residents’ perceptions and intended evacuation behaviors in response to an earthquake and tsunami, utilizing a survey sent to households in Seaside, OR. The results show that the majority of respondents can correctly identify whether their house is inside or outside a tsunami inundation zone. Older respondents are more likely to identify this correctly regardless of any previous disaster evacuation experience or community tenure. The majority of respondents (69%) say they would evacuate in the event of a tsunami. Factors influencing this choice include age, motor ability, access to transportation, and trust in infrastructure resiliency or traffic conditions. While the City of Seaside actively promotes evacuation by foot, 38% of respondents still state they would use a motor vehicle to evacuate. Females and older respondents are more likely to evacuate by foot. Respondents with both higher confidence in their knowledge of disaster evacuation and higher income are more likely to indicate less time needed to evacuate than others. Generally, respondents are more likely to lead rather than follow during an evacuation, especially respondents who report being more prepared for an evacuation and who have a higher perceived risk. This study showcases a unique effort at empirically analyzing human tsunami evacuation lead or follow choice behavior.more » « less
-
The growing complexity of natural disasters, intensified by climate change, has amplified the challenges of managing emergency shelter demand. Accurate shelter demand forecasting is crucial to optimize resource allocation, prevent overcrowding, and ensure evacuee safety, particularly during concurrent disasters like hurricanes and pandemics. Real-time decision-making during evacuations remains a significant challenge due to dynamic evacuation behaviors and evolving disaster conditions. This study introduces a spatiotemporal modeling framework that leverages connected vehicle data to predict shelter demand using data collected during Hurricane Sally (September 2020) across Santa Rosa, Escambia, and Okaloosa counties in Florida, USA. Using Generalized Additive Models (GAMs) with spatial and temporal smoothing, integrated with GIS tools, the framework captures non-linear evacuation patterns and predicts shelter demand. The GAM outperformed the baseline Generalized Linear Model (GLM), achieving a Root Mean Square Error (RMSE) of 6.7791 and a correlation coefficient (CORR) of 0.8593 for shelters on training data, compared to the GLM’s RMSE of 12.9735 and CORR of 0.1760. For lodging facilities, the GAM achieved an RMSE of 4.0368 and CORR of 0.5485, improving upon the GLM’s RMSE of 4.6103 and CORR of 0.2897. While test data showed moderate declines in performance, the GAM consistently offered more accurate and interpretable results across both facility types. This integration of connected vehicle data with spatiotemporal modeling enables real-time insights into evacuation dynamics. Visualization outputs, like spatial heat maps, provide actionable data for emergency planners to allocate resources efficiently, enhancing disaster resilience and public safety during complex emergencies.more » « less
An official website of the United States government

