skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bar Formation and Destruction in the FIRE-2 Simulations
Abstract The physical mechanisms responsible for bar formation and destruction in galaxies remain a subject of debate. While we have gained valuable insight into how bars form and evolve from isolated idealized simulations, in the cosmological domain, galactic bars evolve in complex environments, with mergers and gas accretion events occurring in the presence of the turbulent interstellar medium with multiple star formation episodes, in addition to coupling with their host galaxies’ dark matter halos. We investigate the bar formation in 13 Milky Way–mass galaxies from the Feedback in Realistic Environments (FIRE-2) cosmological zoom-in simulations. 8 of the 13 simulated galaxies form bars at some point during their history: three from tidal interactions and five from internal evolution of the disk. The bars in FIRE-2 are generally shorter than the corotation radius (mean bar radius ∼1.53 kpc), have a wide range of pattern speeds (36–97 km s−1kpc−1), and live for a wide range of dynamical times (2–160 bar rotations). We find that the bar formation in FIRE-2 galaxies is influenced by satellite interactions and the stellar-to-dark-matter mass ratio in the inner galaxy, but neither is a sufficient condition for bar formation. Bar formation is more likely to occur, with the bars formed being stronger and longer-lived, if the disks are kinematically cold; galaxies with high central gas fractions and/or vigorous star formation, on the other hand, tend to form weaker bars. In the case of the FIRE-2 galaxies, these properties combine to produce ellipsoidal bars with strengthsA2/A0∼ 0.1–0.2.  more » « less
Award ID(s):
2108318 2045928
PAR ID:
10568015
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
AAS Journals
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
978
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
37
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The LMC’s stellar bar is offset from the outer disk center, tilted from the disk plane, and does not drive gas inflows. These properties are atypical of bars in gas-rich galaxies, yet the LMC bar’s strength and radius are similar to typical barred galaxies. UsingN-body hydrodynamic simulations, we show that the LMC’s unusual bar is explainable if there was a recent collision (impact parameter ≈2 kpc) between the LMC and SMC. Pre-collision, the simulated bar is centered and coplanar. Post-collision, the simulated bar is offset (≈1.5 kpc) and tilted (≈8 . ° 6). The simulated bar offset reduces with time, and comparing with the observed offset (≈0.8 kpc) suggests the timing of the true collision to be 150–200 Myr ago. Then, 150 Myr post-collision, the LMC’s bar is centered with its dark matter (DM) halo, whereas the outer disk center is separated from the DM center by ≈1 kpc. The SMC collision produces a tilted-ring structure for the simulated LMC, consistent with observations. Post-collision, the simulated LMC bar’s pattern speed decreases by a factor of 2. We also provide a generalizable framework to quantitatively compare the LMC’s central gas distribution in different LMC–SMC interaction scenarios. We demonstrate that the SMC’s torques on the LMC’s bar during the collision are sufficient to explain the observed bar tilt, provided the SMC’s total mass within 2 kpc was (0.8–2.4) × 109M. Therefore, the LMC bar’s tilt constrains the SMC’s pre-collision DM profile, and requires the SMC to be a DM-dominated galaxy. 
    more » « less
  2. ABSTRACT We analyse the cold dark matter density profiles of 54 galaxy haloes simulated with Feedback In Realistic Environments (FIRE)-2 galaxy formation physics, each resolved within $$0.5{{\ \rm per\ cent}}$$ of the halo virial radius. These haloes contain galaxies with masses that range from ultrafaint dwarfs ($$M_\star \simeq 10^{4.5}\, \mathrm{M}_{\odot }$$) to the largest spirals ($$M_\star \simeq 10^{11}\, \mathrm{M}_{\odot }$$) and have density profiles that are both cored and cuspy. We characterize our results using a new, analytic density profile that extends the standard two-parameter Einasto form to allow for a pronounced constant density core in the resolved innermost radius. With one additional core-radius parameter, rc, this three-parameter core-Einasto profile is able to characterize our feedback-impacted dark matter haloes more accurately than other three-parameter profiles proposed in the literature. To enable comparisons with observations, we provide fitting functions for rc and other profile parameters as a function of both M⋆ and M⋆/Mhalo. In agreement with past studies, we find that dark matter core formation is most efficient at the characteristic stellar-to-halo mass ratio M⋆/Mhalo ≃ 5 × 10−3, or $$M_{\star } \sim 10^9 \, \mathrm{M}_{\odot }$$, with cores that are roughly the size of the galaxy half-light radius, rc ≃ 1−5 kpc. Furthermore, we find no evidence for core formation at radii $$\gtrsim 100\ \rm pc$$ in galaxies with M⋆/Mhalo < 5 × 10−4 or $$M_\star \lesssim 10^6 \, \mathrm{M}_{\odot }$$. For Milky Way-size galaxies, baryonic contraction often makes haloes significantly more concentrated and dense at the stellar half-light radius than DMO runs. However, even at the Milky Way scale, FIRE-2 galaxy formation still produces small dark matter cores of ≃ 0.5−2 kpc in size. Recent evidence for a ∼2 kpc core in the Milky Way’s dark matter halo is consistent with this expectation. 
    more » « less
  3. Abstract We study how supersonic streaming velocities of baryons relative to dark matter—a large-scale effect imprinted at recombination and coherent over ∼3 Mpc scales—affect the formation of dwarf galaxies atz≳ 5. We perform cosmological hydrodynamic simulations, including and excluding streaming velocities, in regions centered on halos withMvir(z= 0) ≈ 1010M; the simulations are part of the Feedback In Realistic Environments (FIRE) project and run with FIRE-3 physics. Our simulations comprise many thousands of systems with halo masses betweenMvir= 2 × 105Mand 2 × 109Min the redshift rangez= 20–5. A few hundred of these galaxies form stars and have stellar masses ranging from 100 to 107M. While star formation is globally delayed by approximately 50 Myr in the streaming relative to nonstreaming simulations and the number of luminous galaxies is correspondingly suppressed at high redshift in the streaming runs, these effects decay with time. Byz= 5, the properties of the simulated galaxies are nearly identical in the streaming versus nonstreaming runs, indicating that any effects of streaming velocities on the properties of galaxies at the mass scale of classical dwarfs and larger do not persist toz= 0. 
    more » « less
  4. Abstract Extended, old, and round stellar halos appear to be ubiquitous around high-mass dwarf galaxies (108.5<M/M< 109.6) in the observed universe. However, it is unlikely that these dwarfs have undergone a sufficient number of minor mergers to form stellar halos that are composed of predominantly accreted stars. Here, we demonstrate that FIRE-2 (Feedback in Realistic Environments) cosmological zoom-in simulations are capable of producing dwarf galaxies with realistic structures, including both a thick disk and round stellar halo. Crucially, these stellar halos are formed in situ, largely via the outward migration of disk stars. However, there also exists a large population of “nondisky” dwarfs in FIRE-2 that lack a well-defined disk/halo and do not resemble the observed dwarf population. These nondisky dwarfs tend to be either more gas-poor or to have burstier recent star formation histories than the disky dwarfs, suggesting that star formation feedback may be preventing disk formation. Both classes of dwarfs underscore the power of a galaxy’s intrinsic shape—which is a direct quantification of the distribution of the galaxy’s stellar content—to interrogate the feedback implementation in simulated galaxies. 
    more » « less
  5. Abstract We present the first suite of cosmological hydrodynamical zoom-in simulations of isolated dwarf galaxies for a dark sector that consists of cold dark matter and a strongly dissipative subcomponent. The simulations are implemented in GIZMO and include standard baryons following the FIRE-2 galaxy formation physics model. The dissipative dark matter is modeled as atomic dark matter (aDM), which forms a dark hydrogen gas that cools in direct analogy to the Standard Model. Our suite includes seven different simulations of ∼1010Msystems that vary over the aDM microphysics and the dwarf’s evolutionary history. We identify a region of aDM parameter space where the cooling rate is aggressive and the resulting halo density profile is universal. In this regime, the aDM gas cools rapidly at high redshifts, and only a small fraction survives in the form of a central dark gas disk; the majority collapses centrally into collisionless dark “clumps,” which are clusters of subresolution dark compact objects. These dark clumps rapidly equilibrate in the inner galaxy, resulting in an approximately isothermal distribution that can be modeled with a simple fitting function. Even when only a small fraction (∼5%) of the total dark matter is strongly dissipative, the central densities of classical dwarf galaxies can be enhanced by over an order of magnitude, providing a sharp prediction for observations. 
    more » « less