This paper describes the scalable fabrication of smart electronic textiles (e-textiles) capable of simultaneous sensing, filtration, and detoxification of sulfur dioxide (SO2). The templated method converts pre-deposited copper metal into copper hydroxide, followed by conversion into a copper-based hexahydroxytriphenylene metal-organic framework (MOF) (Cu3(HHTP)2), to afford a large-area (10 × 10 cm2) conductive coating (sheet resistance = 0.1–0.3 MΩ). The resulting e-textiles achieve sensing (theoretical limit of detection [LOD] of 0.43 ppm), filtration (adsorption uptake of 1.9 and 0.83 mmol g−1 for MOF powder and MOF/textile, respectively, at 1 bar and 298 K), and detoxification (redox conversion of SO2 gas into solid sulfate) due to the selective material-analyte interactions. This scalable method for generating e-textiles is a promising approach for the fabrication of smart membrane materials with multifunctional performance characteristics.
more »
« less
Fiber Integrated Metal‐Organic Frameworks as Functional Components in Smart Textiles
Abstract Owing to high modularity and synthetic tunability, metal–organic frameworks (MOFs) on textiles are poised to contribute to the development of state‐of‐the‐art wearable systems with multifunctional performance. While these composite materials have demonstrated promising functions in sensing, filtration, detoxification, and biomedicine, their applicability in multifunctional systems is only beginning to materialize. This review highlights the multifunctionality and versatility of MOF‐integrated textile systems. It summarizes the operational goals of MOF@textile composites, encompassing sensing, filtration, detoxification, drug delivery, UV protection, and photocatalysis. Building upon these recent advances, this review concludes with an outlook on emerging opportunities for the diverse applications of MOF@textile systems in the realm of smart wearables.
more »
« less
- Award ID(s):
- 1945218
- PAR ID:
- 10462898
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Angewandte Chemie International Edition
- Volume:
- 62
- Issue:
- 49
- ISSN:
- 1433-7851
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sensing complex gaseous mixtures and identifying their composition and concentration have the potential to achieve unprecedented improvements in environmental monitoring, medical diagnostics, industrial safety, and the food/agriculture industry. Electronically transduced chemical sensors capable of recognizing and differentiating specific target gases and transducing these chemical stimuli in a portable electronic device offer an opportunity for impact by bridging the utility of chemical information with global wireless connectivity. Among electronically transduced chemical sensors, chemiresistors stand out as particularly promising due to combined features of low-power requirements, room temperature operation, non-line-of-sight detection, high portability, and exceptional modularity. Relying on changes in resistance of a functional material triggered by variations in the surrounding chemical environment, these devices have achieved part-per-billion sensitivities of analytes by employing conductive polymers, graphene, carbon nanotubes (CNTs), metal oxides, metal nanoparticles, metal dichalcogenides, or MXenes as sensing materials. Despite these tremendous developments, the need for stable, selective, and sensitive chemiresistors demands continued innovation in material design in order to operate in complex mixtures with interferents as well as variations in humidity and temperature. To fill existing gaps in sensing capabilities, conductive metal−organic frameworks (MOFs) and covalent organic frameworks (COFs) have recently emerged as a promising class of materials for chemiresistive sensing. In contrast to previously reported chemiresistors, these materials offer at least three unique features for gas sensing applications: (i) bottom-up synthesis from molecularly precise precursors that allows for strategic control of material−analyte interactions, (ii) intrinsic conductivity that simultaneously facilitates charge transport and signal transduction under low power requirements, and (iii) high surface area that enables the accessibility of abundant active sites and decontamination of gas streams by coordinating to and, sometimes, detoxifying harmful analytes. Through an emphasis on molecular engineering of structure−property relationships in conductive MOFs and COFs, combined with strategic innovations in device integration strategies and device form factor (i.e., the physical dimensions and design of device components), our group has paved the way to demonstrating the multifunctional utility of these materials in the chemiresistive detection of gases and vapors. Backed by spectroscopic assessment of material−analyte interactions, we illustrated how molecular-level features lead to device performance in detection, filtration, and detoxification of gaseous analytes. By merging the bottom-up synthesis of these materials with device integration, we show the versatility and scalability of using these materials in low-power electronic sensing devices. Taken together, our achievements, combined with the progress spearheaded on this class of materials by other researchers, establish conductive MOFs and COFs as promising multifunctional materials for applications in electronically transduced, portable, low-power sensing devices.more » « less
-
Hybrid materials combining the optoelectronic absorption and tunability of quantum dots (QDs) with the high surface area, chemical functionality, and porosity of metal-organic frameworks (MOFs) are emerging as systems with unique optoelectronic properties relevant to applications in catalysis, sensing, and energy conversion and storage. A key component of the electronic interaction between QDs and MOFs is the transfer of charge between the two materials. This review examines the mechanisms driving charge transfer at the QD/MOF interfaces and the effects that both physical and chemical composition have on this process. We provide an overview of the key experimental approaches, including spectroscopic and electrochemical techniques, which have been used for probing charge transfer dynamics in this hybrid system. Challenges in controlling interfacial structure, distinguishing between charge and energy transfer, and optimizing stability are also discussed. This review highlights recent work on the preparation and characterization of QD/MOF hybrid materials, as well as fundamental studies advancing the understanding of charge transfer processes that occur in these systems.more » « less
-
null (Ed.)Ionic liquid based fiber welding has been used to attach the metal−organic framework (MOF) UiO-66-NH2to cotton fibers. The results show that by controlling the extent of the welding process, it is possible to produce fibers that contain a high surface area (approximately 50−100 m2/ g), an X-ray diffraction pattern consistent with UiO-66-NH2, and fibers that are chemically reactive to dimethyl 4-nitrophenyl phosphate (DMNP), a common chemical weapon simulant. The ionic liquid/MOF welding solution can be applied by directly placing the fabric in the welding solution or by utilizing an airbrushing technique. Both welding techniques are shown to be scalable with results collected on approximately 1×1, 5 ×5, and 15.5×15.5 in. swatches. The results are also applicable to weaving methods where the MOF is welded to individual threads and subsequently woven into a textile. The results provide an industrially scalable method of attaching a wide variety of MOFs to cotton textiles, which does not require synthesizing the MOF in the presence of the textile.more » « less
An official website of the United States government
