Abstract The response of severe convective storms to a warming climate is poorly understood outside of a few well studied regions. Here, projections from seven global climate models from the CMIP6 archive, for both historical and future scenarios, are used to explore the global response in variables that describe favorability of conditions for the development of severe storms. The variables include convective available potential energy (CAPE), convection inhibition (CIN), 0–6 km vertical wind shear (S06), storm relative helicity (SRH), and covariate indices (i.e., severe weather proxies) that combine them. To better quantify uncertainty, understand variable sensitivity to increasing temperature, and present results independent from a specific scenario, we consider changes in convective variables as a function of global average temperature increase across each ensemble member. Increases to favorable convective environments show an overall frequency increases on the order of 5%–20% per °C of global temperature increase, but are not regionally uniform, with higher latitudes, particularly in the Northern Hemisphere, showing much larger relative changes. The driving mechanism of these changes is a strong increase in CAPE that is not offset by factors that either resist convection (CIN), or modify the likelihood of storm organization (S06, SRH). Severe weather proxies are not the same as severe weather events. Hence, their projected increases will not necessarily translate to severe weather occurrences, but they allow us to quantify how increases in global temperature will affect the occurrence of conditions favorable to severe weather.
more »
« less
Deriving Severe Hail Likelihood from Satellite Observations and Model Reanalysis Parameters Using a Deep Neural Network
Abstract Geostationary satellite imagers provide historical and near-real-time observations of cloud-top patterns that are commonly associated with severe convection. Environmental conditions favorable for severe weather are thought to be represented well by reanalyses. Predicting exactly where convection and costly storm hazards like hail will occur using models or satellite imagery alone, however, is extremely challenging. The multivariate combination of satellite-observed cloud patterns with reanalysis environmental parameters, linked to Next Generation Weather Radar (NEXRAD) estimated maximum expected size of hail (MESH) using a deep neural network (DNN), enables estimation of potentially severe hail likelihood for any observed storm cell. These estimates are made where satellites observe cold clouds, indicative of convection, located in favorable storm environments. We seek an approach that can be used to estimate climatological hailstorm frequency and risk throughout the historical satellite data record. Statistical distributions of convective parameters from satellite and reanalysis show separation between nonsevere and severe hailstorm classes for predictors that include overshooting cloud-top temperature and area characteristics, vertical wind shear, and convective inhibition. These complex, multivariate predictor relationships are exploited within a DNN to produce a likelihood estimate with a critical success index of 0.511 and Heidke skill score of 0.407, which is exceptional among analogous hail studies. Furthermore, applications of the DNN to case studies demonstrate good qualitative agreement between hail likelihood and MESH. These hail classifications are aggregated across an 11-yr Geostationary Operational Environmental Satellite (GOES) image database fromGOES-12/13to derive a hail frequency and severity climatology, which denotes the central Great Plains, the Midwest, and northwestern Mexico as being the most hail-prone regions within the domain studied.
more »
« less
- Award ID(s):
- 1855054
- PAR ID:
- 10463138
- Publisher / Repository:
- American Meteorological Society
- Date Published:
- Journal Name:
- Artificial Intelligence for the Earth Systems
- Volume:
- 2
- Issue:
- 4
- ISSN:
- 2769-7525
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract. An ability to accurately detect convective regions isessential for initializing models for short-term precipitation forecasts.Radar data are commonly used to detect convection, but radars that providehigh-temporal-resolution data are mostly available over land, and the qualityof the data tends to degrade over mountainous regions. On the other hand,geostationary satellite data are available nearly anywhere and in near-realtime. Current operational geostationary satellites, the GeostationaryOperational Environmental Satellite-16 (GOES-16) and Satellite-17, provide high-spatial- and high-temporal-resolution data but only of cloud top properties; 1 min data, however, allow us to observe convection from visible andinfrared data even without vertical information of the convective system.Existing detection algorithms using visible and infrared data look forstatic features of convective clouds such as overshooting top or lumpy cloudtop surface or cloud growth that occurs over periods of 30 min to anhour. This study represents a proof of concept that artificial intelligence(AI) is able, when given high-spatial- and high-temporal-resolution data fromGOES-16, to learn physical properties of convective clouds and automate thedetection process. A neural network model with convolutional layers is proposed to identifyconvection from the high-temporal resolution GOES-16 data. The model takesfive temporal images from channel 2 (0.65 µm) and 14 (11.2 µm) asinputs and produces a map of convective regions. In order to provideproducts comparable to the radar products, it is trained against Multi-RadarMulti-Sensor (MRMS), which is a radar-based product that uses a rathersophisticated method to classify precipitation types. Two channels fromGOES-16, each related to cloud optical depth (channel 2) and cloud topheight (channel 14), are expected to best represent features of convectiveclouds: high reflectance, lumpy cloud top surface, and low cloud toptemperature. The model has correctly learned those features of convectiveclouds and resulted in a reasonably low false alarm ratio (FAR) and highprobability of detection (POD). However, FAR and POD can vary depending onthe threshold, and a proper threshold needs to be chosen based on thepurpose.more » « less
-
Abstract Severe storms produce hazardous weather phenomena, such as large hail, damaging winds, and tornadoes. However, relationships between convective parameters and confirmed severe weather occurrences are poorly quantified in south-central Brazil. This study explores severe weather reports and measurements from newly available datasets. Hail, damaging wind, and tornado reports are sourced from the PREVOTS project from June 2018 to December 2021, while measurements of convectively induced wind gusts from 1996 to 2019 are obtained from METAR reports and from Brazil’s operational network of automated weather stations. Proximal convective parameters were computed from ERA5 reanalysis for these reports and used to perform a discriminant analysis using mixed-layer CAPE and deep-layer shear (DLS). Compared to other regions, thermodynamic parameters associated with severe weather episodes exhibit lower magnitudes in south-central Brazil. DLS displays better performance in distinguishing different types of hazardous weather, but does not discriminate well between distinct severity levels. To address the sensitivity of the discriminant analysis to distinct environmental regimes and hazard types, five different discriminants are assessed. These include discriminants for any severe storm, severe hail only, severe wind gust only, and all environments but broken into “high” and “low” CAPE regimes. The best performance of the discriminant analysis is found for the “high” CAPE regime, followed by the severe wind regime. All discriminants demonstrate that DLS plays a more important role in conditioning Brazilian severe storm environments than other regions, confirming the need to ensure that parameters and discriminants are tuned to local severe weather conditions.more » « less
-
null (Ed.)Hailstorms are dangerous and costly phenomena that are expected to change in response to a warming climate. In this Review, we summarize current knowledge of climate change effects on hailstorms. As a result of anthropogenic warming, it is generally anticipated that low-level moisture and convective instability will increase, raising hailstorm likelihood and enabling the formation of larger hailstones; the melting height will rise, enhancing hail melt and increasing the average size of surviving hailstones; and vertical wind shear will decrease overall, with limited influence on the overall hailstorm activity, owing to a predominance of other factors. Given geographic differences and offsetting interactions in these projected environmental changes, there is spatial heterogeneity in hailstorm responses. Observations and modelling lead to the general expectation that hailstorm frequency will increase in Australia and Europe, but decrease in East Asia and North America, while hail severity will increase in most regions. However, these projected changes show marked spatial and temporal variability. Owing to a dearth of long-term observations, as well as incomplete process understanding and limited convection-permitting modelling studies, current and future climate change effects on hailstorms remain highly uncertain. Future studies should focus on detailed processes and account for non-stationarities in proxy relationships.more » « less
-
Abstract This work examines a severe weather event that took place over central Argentina on 11 December 2018. The evolution of the storm from its initiation, rapid organization into a supercell, and eventual decay was analyzed with high‐temporal resolution observations. This work provides insight into the spatio‐temporal co‐evolution of storm kinematics (updraft area and lifespan), cloud‐top cooling rates, and lightning production that led to severe weather. The analyzed storm presented two convective periods with associated severe weather. An overall decrease in cloud‐top local minima IR brightness temperature (MinIR) and lightning jump (LJ) preceded both periods. LJs provided the highest lead time to the occurrence of severe weather, with the ground‐based lightning networks providing the maximum warning time of around 30 min. Lightning flash counts from the Geostationary Lightning Mapper (GLM) were underestimated when compared to detections from ground‐based lightning networks. Among the possible reasons for GLM's lower detection efficiency were an optically dense medium located above lightning sources and the occurrence of flashes smaller than GLM's footprint. The minimum MinIR provided the shorter warning time to severe weather occurrence. However, the secondary minima in MinIR that preceded the absolute minima improved this warning time by more than 10 min. Trends in MinIR for time scales shorter than 6 min revealed shorter cycles of fast cooling and warming, which provided information about the lifecycle of updrafts within the storm. The advantages of using observations with high‐temporal resolution to analyze the evolution and intensity of convective storms are discussed.more » « less
An official website of the United States government
