Solid-state laser refrigeration of semiconductors remains an outstanding experimental challenge. In this work, we show that, following excitation with a laser wavelength of 532 nm, bulk diamond crystals doped with H3 centers both emit efficient up-conversion (anti-Stokes) photoluminescence and also show significantly reduced photothermal heating relative to crystals doped with nitrogen–vacancy (NV) centers. The H3 center in diamond is a highly photostable defect that avoids bleaching at high laser irradiances of 10–70 MW/cm[Formula: see text] and has been shown to exhibit laser action, tunable over the visible band of 500–600 nm. The observed reduction of photothermal heating arises due to a decrease in the concentration of absorbing point defects, including NV-centers. These results encourage future exploration of techniques for H3 enrichment in diamonds under high-pressure, high-temperature conditions for the simultaneous anti-Stokes fluorescence cooling and radiation balanced lasing in semiconductor materials. Reducing photothermal heating in diamond through the formation of H3 centers also opens up new possibilities in quantum sensing via optically detected magnetic resonance spectroscopy at ambient conditions.
Imaging dark charge emitters in diamond via carrier-to-photon conversion
The application of color centers in wide-bandgap semiconductors to nanoscale sensing and quantum information processing largely rests on our knowledge of the surrounding crystalline lattice, often obscured by the countless classes of point defects the material can host. Here, we monitor the fluorescence from a negatively charged nitrogen-vacancy (NV − ) center in diamond as we illuminate its vicinity. Cyclic charge state conversion of neighboring point defects sensitive to the excitation beam leads to a position-dependent stream of photo-generated carriers whose capture by the probe NV − leads to a fluorescence change. This “charge-to-photon” conversion scheme allows us to image other individual point defects surrounding the probe NV, including nonfluorescent “single-charge emitters” that would otherwise remain unnoticed. Given the ubiquity of color center photochromism, this strategy may likely find extensions to material systems other than diamond.
- Publication Date:
- NSF-PAR ID:
- 10338229
- Journal Name:
- Science Advances
- Volume:
- 8
- Issue:
- 1
- ISSN:
- 2375-2548
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Color-center–hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center–assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anticrossing condition—where the P1 Zeeman splitting matches one of the NV spin transitions—we demonstrate efficient microwave-free 13 C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13 C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with themore »
-
Abstract The nitrogen-vacancy (NV) color center in diamond has rapidly emerged as an important solid-state system for quantum information processing. Whereas individual spin registers have been used to implement small-scale diamond quantum computing, the realization of a large-scale device requires the development of an on-chip quantum bus for transporting information between distant qubits. Here, we propose a method for coherent quantum transport of an electron and its spin state between distant NV centers. Transport is achieved by the implementation of spatial stimulated adiabatic Raman passage through the optical control of the NV center charge states and the confined conduction states of a diamond nanostructure. Our models show that, for two NV centers in a diamond nanowire, high-fidelity transport can be achieved over distances of order hundreds of nanometers in timescales of order hundreds of nanoseconds. Spatial adiabatic passage is therefore a promising option for realizing an on-chip spin quantum bus.
-
Creatinine measurement in blood and urine is an important diagnostic test for assessing kidney health. In this study, a molecularly imprinted polymer was obtained by incorporating fluorescent nanodiamond into a creatinine-imprinted polyacrylamide hydrogel. The quenching of peak nanodiamond fluorescence was significantly higher in the creatinine-imprinted polymer compared to the non-imprinted polymer, indicative of higher creatinine affinity in the imprinted polymer. Fourier transform infrared spectroscopy and microscopic imaging was used to investigate the nature of chemical bonding and distribution of nanodiamonds inside the hydrogel network. Nanodiamonds bind strongly to the hydrogel network, but as aggregates with average particle diameter of 3.4 ± 1.8 µm and 3.1 ± 1.9 µm for the non-imprinted and molecularly imprinted polymer, respectively. Nanodiamond fluorescence from nitrogen-vacancy color centers (NV− and NV0) was also used to detect creatinine based on nanodiamond-creatinine surface charge interaction. Results show a 15% decrease of NV−/NV0 emission ratio for the creatinine-imprinted polymer compared to the non-imprinted polymer, and are explained in terms of changes in the near-surface band structure of diamond with addition of creatinine. With further improvement of sensor design to better disperse nanodiamond within the hydrogel, fluorescent sensing from nitrogen-vacancy centers is expected to yield higher sensitivity with a longermore »
-
Abstract We designed a nanoscale light extractor (NLE) for the efficient outcoupling and beaming of broadband light emitted by shallow, negatively charged nitrogen-vacancy (NV) centers in bulk diamond. The NLE consists of a patterned silicon layer on diamond and requires no etching of the diamond surface. Our design process is based on adjoint optimization using broadband time-domain simulations and yields structures that are inherently robust to positioning and fabrication errors. Our NLE functions like a transmission antenna for the NV center, enhancing the optical power extracted from an NV center positioned 10 nm below the diamond surface by a factor of more than 35, and beaming the light into a ±30° cone in the far field. This approach to light extraction can be readily adapted to other solid-state color centers.