skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Beyond Black-Boxing: Building Intuitions of Complex Machine Learning Ideas Through Interactives and Levels of Abstraction
Existing approaches to teaching artificial intelligence and machine learning often focus on the use of pre-trained models or fine-tuning an existing black-box architecture. We believe advanced ML topics, such as optimization and adversarial examples, can be learned by early high school age students given appropriate support. Our approach focuses on enabling students to develop deep intuition about these complex concepts by first making them accessible to novices through interactive tools, pre-programmed games, and carefully designed programming activities. Then, students are able to engage with the concepts via meaningful, hands-on experiences that span the entire ML process from data collection to model optimization and inspection.  more » « less
Award ID(s):
2113803
PAR ID:
10463543
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The 2022 ACM Conference on International Computing Education Research V.2 (ICER ’22)
Volume:
2
Page Range / eLocation ID:
21 to 23
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Existing approaches to teaching artifcial intelligence and machine learning (ML) often focus on the use of pre-trained models or fne-tuning an existing black-box architecture. We believe ML techniques and core ML topics, such as optimization and adversarial examples, can be designed for high school age students given appropriate support. Our curricular approach focuses on teaching ML ideas by enabling students to develop deep intuition about these complex concepts by first making them accessible to novices through interactive tools, pre-programmed games, and carefully designed programming activities. Then, students are able to engage with the concepts via meaningful, hands-on experiences that span the entire ML process from data collection to model optimization and inspection. This paper describes our AI & Cybersecurity for Teens suite of curricular activities aimed at high school students and teachers. 
    more » « less
  2. Artificial Intelligence (AI) enhanced systems are widely adopted in post-secondary education, however, tools and activities have only recently become accessible for teaching AI and machine learning (ML) concepts to K-12 students. Research on K-12 AI education has largely included student attitudes toward AI careers, AI ethics, and student use of various existing AI agents such as voice assistants; most of which has focused on high school and middle school. There is no consensus on which AI and Machine Learning concepts are grade-appropriate for elementary-aged students or how elementary students explore and make sense of AI and ML tools. AI is a rapidly evolving technology and as future decision-makers, children will need to be AI literate[1]. In this paper, we will present elementary students’ sense-making of simple machine-learning concepts. Through this project, we hope to generate a new model for introducing AI concepts to elementary students into school curricula and provide tangible, trainable representations of ML for students to explore in the physical world. In our first year, our focus has been on simpler machine learning algorithms. Our desire is to empower students to not only use AI tools but also to understand how they operate. We believe that appropriate activities can help late elementary-aged students develop foundational AI knowledge namely (1) how a robot senses the world, and (2) how a robot represents data for making decisions. Educational robotics programs have been repeatedly shown to result in positive learning impacts and increased interest[2]. In this pilot study, we leveraged the LEGO® Education SPIKE™ Prime for introducing ML concepts to upper elementary students. Through pilot testing in three one-week summer programs, we iteratively developed a limited display interface for supervised learning using the nearest neighbor algorithm. We collected videos to perform a qualitative evaluation. Based on analyzing student behavior and the process of students trained in robotics, we found some students show interest in exploring pre-trained ML models and training new models while building personally relevant robotic creations and developing solutions to engineering tasks. While students were interested in using the ML tools for complex tasks, they seemed to prefer to use block programming or manual motor controls where they felt it was practical. 
    more » « less
  3. null (Ed.)
    ABSTRACT Recent advances in computer hardware and software, particularly the availability of machine learning (ML) libraries, allow the introduction of data-based topics such as ML into the biophysical curriculum for undergraduate and graduate levels. However, there are many practical challenges of teaching ML to advanced level students in biophysics majors, who often do not have a rich computational background. Aiming to overcome such challenges, we present an educational study, including the design of course topics, pedagogic tools, and assessments of student learning, to develop the new methodology to incorporate the basis of ML in an existing biophysical elective course and engage students in exercises to solve problems in an interdisciplinary field. In general, we observed that students had ample curiosity to learn and apply ML algorithms to predict molecular properties. Notably, feedback from the students suggests that care must be taken to ensure student preparations for understanding the data-driven concepts and fundamental coding aspects required for using ML algorithms. This work establishes a framework for future teaching approaches that unite ML and any existing course in the biophysical curriculum, while also pinpointing the critical challenges that educators and students will likely face. 
    more » « less
  4. Machine Learning (ML) analyzes, and processes data and discover patterns. In cybersecurity, it effectively analyzes big data from existing cybersecurity attacks and develop proactive strategies to detect current and future cybersecurity attacks. Both ML and cybersecurity are important subjects in computing curriculum, but using ML for cybersecurity is not commonly explored. This paper designs and presents a case study-based portable labware experience built on Google's CoLaboratory (CoLab) for a ML cybersecurity application to provide students with hands-on labs accessing from anywhere and anytime, reducing or eliminating tedious installations and configurations. This approach allows students to focus on learning essential concepts and gaining valuable experience through hands-on problem solving skills. Our preliminary results and student evaluations are reported for a case-based hands-on regression labware in cyber fraud prediction using credit card fraud as an example. 
    more » « less
  5. Machine Learning (ML) analyzes, and processes data and develop patterns. In the case of cybersecurity, it helps to better analyze previous cyber attacks and develop proactive strategy to detect and prevent the security threats. Both ML and cybersecurity are important subjects in computing curriculum, but ML for cybersecurity is not well presented there. We design and develop case-study based portable labware on Google CoLab for ML to cybersecurity so that students can access and practice these hands-on labs anywhere and anytime without time tedious installation and configuration which will help students more focus on learning of concepts and getting more experience for hands-on problem solving skills. 
    more » « less