skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Neural Network Based Superstructure Optimization Approach to Reverse Osmosis Desalination Plants
An ever-growing population together with globally depleting water resources pose immense stresses for water supply systems. Desalination technologies can reduce these stresses by generating fresh water from saline water sources. Reverse osmosis (RO), as the industry leading desalination technology, typically involves a complex network of membrane modules that separate unwanted particles from water. The optimal design and operation of these complex RO systems can be computationally expensive. In this work, we present a modeling and optimization strategy for addressing the optimal operation of an industrial-scale RO plant. We employ a feed-forward artificial neural network (ANN) surrogate modeling representation with rectified linear units as activation functions to capture the membrane behavior accurately. Several ANN set-ups and surrogate models are presented and evaluated, based on collected data from the H2Oaks RO desalination plant in South-Central Texas. The developed ANN is then transformed into a mixed-integer linear programming formulation for the purpose of minimizing energy consumption while maximizing water utilization. Trade-offs between the two competing objectives are visualized in a Pareto front, where indirect savings can be uncovered by comparing energy consumption for an array of water recoveries and feed flows.  more » « less
Award ID(s):
1739977
PAR ID:
10463739
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Membranes
Volume:
12
Issue:
2
ISSN:
2077-0375
Page Range / eLocation ID:
199
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Seawater desalination has become an important tool to attain global water security and sustainability. Among the available technologies, reverse osmosis (RO) has become the golden standard for seawater desalination due to its unparalleled energy efficiency. While RO is already efficient after development for half a century, there remains room for over 50% further reduction in energy consumption that can translate into tens of terawatt hours of potential annual energy saving. However, this significant energy saving cannot be achieved under the conventional paradigm of on-ground RO. In this analysis, we assess the idea of operating RO with open modules several hundred meters below the ocean surface ( i.e. , the mesopelagic zone). This new process, namely mesopelagic open reverse osmosis (MORO), can potentially push the energy consumption of seawater desalination to its theoretical limit. We first describe the concept of MORO, and then examine both the theoretical potential of energy saving and the practical challenges facing the implementation of MORO. Our analysis provides a theoretical framework for the future development of MORO for more sustainable desalination. 
    more » « less
  2. Energy-efficient desalination and water treatment technologies play a critical role in augmenting freshwater resources without placing an excessive strain on limited energy supplies. By desalinating high-salinity waters using low-grade or waste heat, membrane distillation (MD) has the potential to increase sustainable water production, a key facet of the water-energy nexus. However, despite advances in membrane technology and the development of novel process configurations, the viability of MD as an energy-efficient desalination process remains uncertain. In this review, we examine the key challenges facing MD and explore the opportunities for improving MD membranes and system design. We begin by exploring how the energy efficiency of MD is limited by the thermal separation of water and dissolved solutes. We then assess the performance of MD relative to other desalination processes, including reverse osmosis and multi-effect distillation, comparing various metrics including energy efficiency, energy quality, and susceptibility to fouling. By analyzing the impact of membrane properties on the energy efficiency of an MD desalination system, we demonstrate the importance of maximizing porosity and optimizing thickness to minimize energy consumption. We also show how ineffective heat recovery and temperature polarization can limit the energetic performance of MD and how novel process variants seek to reduce these inefficiencies. Fouling, scaling, and wetting can have a significant detrimental impact on MD performance. We outline how novel membrane designs with special surface wettability and process-based fouling control strategies may bolster membrane and process robustness. Finally, we explore applications where MD may be able to outperform established desalination technologies, increasing water production without consuming large amounts of electrical or high-grade thermal energy. We conclude by discussing the outlook for MD desalination, highlighting challenges and key areas for future research and development. 
    more » « less
  3. The pressure-recovery (P-Y) diagram used in reverse osmosis (RO) literature to compare energy consumptions in different RO configurations has a flaw of not holding the design flux constant. In this work, the P-Y diagrams are constructed with the aid of transport models. It is shown that the area underneath the P-Y curve represents the specific energy consumption (SEC) imposed by design flux and thermodynamics, which may be reduced by improving spatial uniformity in flux. The trend generally observes the equipartition of entropy production theorem. For seawater RO (SWRO) in which pressure drop relative to feed osmotic pressure is small and operation is near the thermodynamic limit, staged designs with interstage booster pumps enable a more uniform flux, thus reducing the SEC. However, for low-salinity brackish water RO (BWRO), improving flux uniformity may lead to a higher SEC as the increased friction loss often outweighs the reduced energy requirement imposed by system flux. 
    more » « less
  4. In-situ monitoring techniques of reverse osmosis (RO) desalination systems, particularly those with chemical sensing capabilities, can provide the means for better understanding important scaling mechanisms as well as early scaling detection. In this work, both calcium sulfate and calcium carbonate scaling on RO membranes were detected concurrently in real time using Raman spectroscopy to provide a unique chemical fingerprint. Two different sampling methodologies (manual and automated) were employed, and their performance was evaluated by comparing the Raman detection times to concurrent values of flux decline. The manual sampling strategy resulted in the detection of calcium sulfate and calcium carbonate at mean permeate flux declines of 13 ± 10 % and 22 ± 3 %, respectively. The automated sampling strategy provided better performance, with detection of calcium sulfate and calcium carbonate at mean flux declines of 8 ± 5 % and 4 ± 3 %, respectively. The increasedsensitivity and decreased variability of the automated sampling strategy provided valuable preliminary insights for the selection of optimized sampling strategies. The ability to identify the chemical composition of different scaling crystals including their polymorphs is an important step toward better understanding of the crystallization pathways of multi-component feed streams used in seawater and brackish water RO desalination. 
    more » « less
  5. Evaporation-based solar thermal distillation is a promising approach for purifying high-salinity water, but the liquid-vapor phase transition inherent to this process makes it intrinsically energy intensive. Here we show that the exchange of heat between the distilled and input water can fulfill a resonance condition, resulting in dramatic increases in fresh water production. Large gains (500%) in distilled water are accomplished by coupling nanophotonics-enabled solar membrane distillation with dynamic thermal recovery, achieved by controlling input flow rates as a function of incident light intensity. The resonance condition, achieved for the circulating heat flux between the distillate and feed, allows the system to behave in an entirely new way, as a desalination oscillator. The resonant oscillator concept introduced here is universal and can be applied to other systems such as thermal energy storage or solar-powered chemical reactors. 
    more » « less