An ever-growing population together with globally depleting water resources pose immense stresses for water supply systems. Desalination technologies can reduce these stresses by generating fresh water from saline water sources. Reverse osmosis (RO), as the industry leading desalination technology, typically involves a complex network of membrane modules that separate unwanted particles from water. The optimal design and operation of these complex RO systems can be computationally expensive. In this work, we present a modeling and optimization strategy for addressing the optimal operation of an industrial-scale RO plant. We employ a feed-forward artificial neural network (ANN) surrogate modeling representation with rectified linear units as activation functions to capture the membrane behavior accurately. Several ANN set-ups and surrogate models are presented and evaluated, based on collected data from the H2Oaks RO desalination plant in South-Central Texas. The developed ANN is then transformed into a mixed-integer linear programming formulation for the purpose of minimizing energy consumption while maximizing water utilization. Trade-offs between the two competing objectives are visualized in a Pareto front, where indirect savings can be uncovered by comparing energy consumption for an array of water recoveries and feed flows.
more »
« less
Emerging investigator series: toward the ultimate limit of seawater desalination with mesopelagic open reverse osmosis
Seawater desalination has become an important tool to attain global water security and sustainability. Among the available technologies, reverse osmosis (RO) has become the golden standard for seawater desalination due to its unparalleled energy efficiency. While RO is already efficient after development for half a century, there remains room for over 50% further reduction in energy consumption that can translate into tens of terawatt hours of potential annual energy saving. However, this significant energy saving cannot be achieved under the conventional paradigm of on-ground RO. In this analysis, we assess the idea of operating RO with open modules several hundred meters below the ocean surface ( i.e. , the mesopelagic zone). This new process, namely mesopelagic open reverse osmosis (MORO), can potentially push the energy consumption of seawater desalination to its theoretical limit. We first describe the concept of MORO, and then examine both the theoretical potential of energy saving and the practical challenges facing the implementation of MORO. Our analysis provides a theoretical framework for the future development of MORO for more sustainable desalination.
more »
« less
- Award ID(s):
- 2017998
- PAR ID:
- 10291663
- Date Published:
- Journal Name:
- Environmental Science: Water Research & Technology
- Volume:
- 7
- Issue:
- 7
- ISSN:
- 2053-1400
- Page Range / eLocation ID:
- 1212 to 1219
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The pressure-recovery (P-Y) diagram used in reverse osmosis (RO) literature to compare energy consumptions in different RO configurations has a flaw of not holding the design flux constant. In this work, the P-Y diagrams are constructed with the aid of transport models. It is shown that the area underneath the P-Y curve represents the specific energy consumption (SEC) imposed by design flux and thermodynamics, which may be reduced by improving spatial uniformity in flux. The trend generally observes the equipartition of entropy production theorem. For seawater RO (SWRO) in which pressure drop relative to feed osmotic pressure is small and operation is near the thermodynamic limit, staged designs with interstage booster pumps enable a more uniform flux, thus reducing the SEC. However, for low-salinity brackish water RO (BWRO), improving flux uniformity may lead to a higher SEC as the increased friction loss often outweighs the reduced energy requirement imposed by system flux.more » « less
-
A unique aqueous silica removal process using naturally occurring diatoms for water reuse and desalination is described. Several strains of brackish water diatoms have been isolated and tested. Among them Pseudostaurosira and Nitzschia species showed promise. Reverse osmosis (RO) concentrate samples from two full-scale advanced water purification facilities and one brackish groundwater RO plant in Southern California have been successfully treated by this process. This new photobiological process could remove aqueous silica, as well as phosphate, ammonia, nitrate, calcium, iron and manganese very effectively. Under non-optimized conditions, 95% of 78 mg·L-1 reactive silica in an RO concentrate sample could be removed within 72 hours. In most cases, addition of nutrients was not necessary because the RO concentrate typically contains sufficient concentrations of macronutrients derived from the source water (i.e., treated wastewater and brackish groundwater). Preliminary characterization of organics indicated that there was no major generation of dissolved organics, which could potentially foul membranes in the subsequent RO process. This new algal process has a strong potential for its application in desalination and water reuse in the United States and around the world.more » « less
-
In-situ monitoring techniques of reverse osmosis (RO) desalination systems, particularly those with chemical sensing capabilities, can provide the means for better understanding important scaling mechanisms as well as early scaling detection. In this work, both calcium sulfate and calcium carbonate scaling on RO membranes were detected concurrently in real time using Raman spectroscopy to provide a unique chemical fingerprint. Two different sampling methodologies (manual and automated) were employed, and their performance was evaluated by comparing the Raman detection times to concurrent values of flux decline. The manual sampling strategy resulted in the detection of calcium sulfate and calcium carbonate at mean permeate flux declines of 13 ± 10 % and 22 ± 3 %, respectively. The automated sampling strategy provided better performance, with detection of calcium sulfate and calcium carbonate at mean flux declines of 8 ± 5 % and 4 ± 3 %, respectively. The increasedsensitivity and decreased variability of the automated sampling strategy provided valuable preliminary insights for the selection of optimized sampling strategies. The ability to identify the chemical composition of different scaling crystals including their polymorphs is an important step toward better understanding of the crystallization pathways of multi-component feed streams used in seawater and brackish water RO desalination.more » « less
-
Polyamide reverse osmosis (PA-RO) membranes achieve remarkably high water permeability and salt rejection, making them a key technology for addressing water shortages through processes including seawater desalination and wastewater reuse. However, current state-of-the-art membranes suffer from challenges related to inadequate selectivity, fouling, and a poor ability of existing models to predict performance. In this Perspective, we assert that a molecular understanding of the mechanisms that govern selectivity and transport of PA-RO and other polymer membranes is crucial to both guide future membrane development efforts and improve the predictive capability of transport models. We summarize the current understanding of ion, water, and polymer interactions in PA-RO membranes, drawing insights from nanofiltration and ion exchange membranes. Building on this knowledge, we explore how these interactions impact the transport properties of membranes, highlighting assumptions of transport models that warrant further investigation to improve predictive capabilities and elucidate underlying transport mechanisms. We then underscore recent advances in in situ characterization techniques that allow for direct measurements of previously difficult-to-obtain information on hydrated polymer membrane properties, hydrated ion properties, and ion–water–membrane interactions as well as powerful computational and electrochemical methods that facilitate systematic studies of transport phenomena.more » « less
An official website of the United States government

