This dissertation explores the impact of dark matter on the early universe and cosmological observables, with a focus on dark matter annihilation effects on thermal history and dark matter annihilation at the small scales, including the formation of the first stars and galaxies. Dark matter annihilation, enhanced by cosmic inhomogeneities, reshapes the gas temperature and ionization history of the early universe. Annihilation injects energy into the IGM, raising the gas temperature and ionization fraction. This process can either suppress or accelerate the star formation. This study examines the effects of dark matter annihilation on the minimum cooling mass of halos at different redshifts. Notably, this work presents the first combined calculation of dark matter annihilation and dark matter baryon velocity offsets, which have previously been treated separately. Our detailed calculations reveal the non-trivial effects of interplay between dark matter annihilation and dark matter baryon velocity offsets affects the evolution of structure formation. To explore these effects further, we extend existing models to include both molecular and atomic cooling halos, allowing star formation to occur in lower-mass halos and offering insights into how dark matter annihilation, streaming velocity, and cooling mechanisms shape early observable signals. Our study calculates the sky-averaged brightness temperature of the high-redshift 21cm absorption signal against the cosmic microwave background, also known as the “global 21cm signal”, including the effects of both dark matter annihilation and velocity offsets. These factors create distinct features in the 21cm signal, providing potential observational signatures of dark matter properties. We also examine energy transfer processes within dark matter halos, including inverse Compton scattering, photoionization, and pair production. By applying a refined Monte Carlo energy-transfer calculation code, we link single-particle simulations to energy deposition fractions. These developments will be crucial for connecting small-scale effects with large- scale galaxy formation models and ultimately interpreting observational data from the early universe.
more »
« less
Annihilogenesis
A bstract We investigate a novel interplay between the decay and annihilation of a particle whose mass undergoes a large shift during a first order phase transition, leading to the particles becoming trapped in the false vacuum and enhancing their annihilation rates as the bubbles of true vacuum expand. This opens up a large region of the parameter space where annihilations can be important. We apply this scenario to baryogenesis, where we find that annihilations can be enhanced enough to generate the required baryon asymmetry even for relatively tiny annihilation cross sections with modest CP asymmetries.
more »
« less
- Award ID(s):
- 1915005
- PAR ID:
- 10463790
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2022
- Issue:
- 8
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The indirect detection of dark matter (DM) through its annihilation products is one of the primary strategies for DM detection. One of the least constrained classes of models is neutrinophilic DM, because the annihilation products, weakly interacting neutrinos, are challenging to observe. Here, we consider a scenario where MeV-mass DM exclusively annihilates to the third neutrino mass eigenstate, which is predominantly of tau and muon flavor. In such a scenario, the potential detection rate of the neutrinos originating from the DM annihilation in our Galaxy in the conventional detectors would be suppressed by up to approximately two orders of magnitude. This is because the best sensitivity of such detectors for neutrinos with energies below approximately 100 MeV is for electron neutrino flavor. In this work, we highlight the potential of large-scale DM detectors in uncovering such signals in the tens of MeV range of DM masses. In addition, we discuss how coincident signals in direct detection DM experiments and upcoming neutrino detectors such as DUNE, Hyper-Kamiokande, and JUNO could provide new perspectives on the DM problem. Published by the American Physical Society2025more » « less
-
Abstract Dark matter annihilation in dwarf spheroidal (dSph) galaxies near the Milky Way has the potential to produce a detectable signature in gamma-rays. The amplitude of this signal depends on the dark matter density in a dSph, the dark matter particle mass, the number of photons produced in an annihilation, and the possibly velocity-dependent dark matter annihilation cross section. We argue that if the amplitude of the annihilation signal from multiple dSphs can be measured, it is possible to determine the velocity-dependence of the annihilation cross section. However, we show that doing so will require improved constraints on the dSph density profiles, including control of possible sources of systematic uncertainty. Making reasonable assumptions about future improvements, we make forecasts for the ability of current and future experiments — including Fermi, CTA and AMEGO — to constrain the dark matter annihilation velocity dependence.more » « less
-
null (Ed.)Abstract We solve the entanglement-assisted (EA) classical capacity region of quantum multiple-access channels (MACs) with an arbitrary number of senders. As an example, we consider the bosonic thermal-loss MAC and solve the one-shot capacity region enabled by an entanglement source composed of sender-receiver pairwise two-mode squeezed vacuum states. The EA capacity region is strictly larger than the capacity region without entanglement-assistance. With two-mode squeezed vacuum states as the source and phase modulation as the encoding, we also design practical receiver protocols to realize the entanglement advantages. Four practical receiver designs, based on optical parametric amplifiers, are given and analyzed. In the parameter region of a large noise background, the receivers can enable a simultaneous rate advantage of 82.0% for each sender. Due to teleportation and superdense coding, our results for EA classical communication can be directly extended to EA quantum communication at half of the rates. Our work provides a unique and practical network communication scenario where entanglement can be beneficial.more » « less
-
We introduce the notions of static regular of type (I) and type (II) and show that they are sufficient conditions for local well-posedness of solving asymptotically flat, static vacuum metrics with prescribed Bartnik boundary data. We then show that hypersurfaces in a very general open and dense family of hypersurfaces are static regular of type (II). As applications, we confirm Bartnik’s static vacuum extension conjecture for a large class of Bartnik boundary data, including those that can be far from Euclidean and have large ADM masses, and give many new examples of static vacuum metrics with intriguing geometry.more » « less
An official website of the United States government

