skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dynamically tuning friction at the graphene interface using the field effect
Abstract Dynamically controlling friction in micro- and nanoscale devices is possible using applied electrical bias between contacting surfaces, but this can also induce unwanted reactions which can affect device performance. External electric fields provide a way around this limitation by removing the need to apply bias directly between the contacting surfaces. 2D materials are promising candidates for this approach as their properties can be easily tuned by electric fields and they can be straightforwardly used as surface coatings. This work investigates the friction between single layer graphene and an atomic force microscope tip under the influence of external electric fields. While the primary effect in most systems is electrostatically controllable adhesion, graphene in contact with semiconducting tips exhibits a regime of unexpectedly enhanced and highly tunable friction. The origins of this phenomenon are discussed in the context of fundamental frictional dissipation mechanisms considering stick slip behavior, electron-phonon coupling and viscous electronic flow.  more » « less
Award ID(s):
1904216
PAR ID:
10463848
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The two-dimensional (2D) materials, represented by graphene, stand out in the electrical industry applications of the future and have been widely studied. As commonly existing in electronic devices, the electric field has been extensively utilized to modulate the performance. However, how the electric field regulates thermal transport is rarely studied. Herein, we investigate the modulation of thermal transport properties by applying an external electric field ranging from 0 to 0.4 V Å −1 , with bilayer graphene, monolayer silicene, and germanene as study cases. The monotonically decreasing trend of thermal conductivity in all three materials is revealed. A significant effect on the scattering rate is found to be responsible for the decreased thermal conductivity driven by the electric field. Further evidence shows that the reconstruction of internal electric field and generation of induced charges lead to increased scattering rate from strong phonon anharmonicity. Thus, the ultralow thermal conductivity emerges with the application of external electric fields. Applying an external electric field to regulate thermal conductivity illustrates a constructive idea for highly efficient thermal management. 
    more » « less
  2. Although graphene is well known for super-lubricity on its basal plane, friction at its step edge is not well understood and contradictory friction behaviors have been reported. In this study, friction of mono-layer thick graphene step edges was studied using atomic force microscopy (AFM) with a Si tip in dry nitrogen atmosphere. It is found that, when the tip slides over a ‘buried’ graphene step edge, there is a resistive force during the step-up motion and an assistive force during the step-down motion due to the topographic height change. The magnitude of these two forces is small and the same in both step-up and step-down motions. As for the ‘exposed’ graphene step edge, friction increases in magnitude and exhibits more complicated behaviors. During the step-down motion of the tip over the exposed step edge, both resistive and assistive components can be detected in the lateral force signal of AFM if the scan resolution is sufficiently high. The resistive component is attributed to chemical interactions between the functional groups at the tip and step-edge surfaces, and the assistive component is due to the topographic effect, same as the case of buried step edge. If a blunt tip is used, the distinct effects of these two components become more prominent. In the step-up scan direction, the blunt tip appears to have two separate topographic effects elastic deformation of the contact region at the bottom of the tip due to the substrate height change at the step edge and tilting of the tip while the vertical position of the cantilever (the end of the tip) ascends from the lower terrace to the upper terrace. The high-resolution measurement of friction behaviors at graphene step edges will further enrich understanding of interfacial friction behaviors on graphene-covered surfaces. 
    more » « less
  3. Abstract Attrition, or the progressive loss of individuals from a sample, poses a major problem in fields that carry out research to inform policy and program design. Attrition reduces statistical power by reducing sample size and compromises the external validity of findings by introducing sampling bias. If sampling bias results from disadvantages that act as barriers to research participation, then it promotes social injustice by excluding disadvantaged groups from the study. This study describes strategies used to retain participants in a longitudinal study of experiences of women under community supervision (probation or parole). It uses quantitative methods to examine sampling bias and qualitative methods to elicit accounts of participants’ explanations for being hard to reach and their recommendations for retention in future research. For participants who were and who were not retained, there were no statistically significant differences on several common quantitative predictors of retention. Hard‐to‐reach women identified residential mobility, low income, and busy lifestyles as main reasons research staff had difficulty contacting them and recommended repeated attempts at contact through multiple means. The article ends with recommendations for limiting attrition of disadvantaged, justice‐involved women in studies, and for steps to be taken when women are especially difficult to contact. 
    more » « less
  4. Abstract Conventional lubricants face significant challenges in electric vehicle (EV) systems due to their low electrical conductivity and inability to mitigate tribo-electrification effects which can result in increased friction, wear, and electrical discharge damage under external electrification. Consequently, conductive lubricants like ionic liquids (ILs) have emerged as promising alternatives, offering enhanced compatibility with EV applications. This study investigated the tribological behavior of four phosphonium-based room temperature ionic liquids (PRTILs) with trihexyltetradecyl phosphonium [P6,6,6,14] or tributyltetradecyl phosphonium [P4,4,4,14] cations and saccharinate [Sacc] or benzoate [Benz] anions under electrified conditions, targeting potential EV applications. Physicochemical properties, including viscosity and ionic conductivity, were measured using a viscometer and a conductivity meter, while tribological properties were evaluated using an electrified mini-traction machine and an electrified rotary ball-on-disk setup. The results revealed that all the PRTILs exhibited superior tribological (friction and wear) performance than mineral oil with or without electrification. PRTILs with the [Sacc] anion feature a double aromatic ring structure, while those with the [Benz] anion feature a single aromatic ring structure. Under low electrification (10 mA), [P6,6,6,14][Sacc] outperformed [Benz]-based PRTILs, showing a lower coefficient of friction and wear due to their higher viscosity and lower ionic conductivity. Additionally, [P6,6,6,14][Sacc] showed a power loss lower than [P4,4,4,14][Sacc] but higher than [Benz]-based PRTILs under tribo-electrification. The addition of graphene nanoplatelets (GNPs) reduced the power loss of [P6,6,6,14][Sacc] by 24% by reducing the electric contact resistance. Overall, double-ring aromatic [P6,6,6,14][Sacc] demonstrated superior tribological performance, and GNP additives enhanced their power efficiency, offering a promising pathway for IL-based lubricant development for electrified conditions. 
    more » « less
  5. Abstract Antiferroelectric materials, where the transition between antipolar and polar phase is controlled by external electric fields, offer exceptional energy storage capacity with high efficiencies, giant electrocaloric effect, and superb electromechanical response. PbZrO3is the first discovered and the archetypal antiferroelectric material. Nonetheless, substantial challenges in processing phase pure PbZrO3have limited studies of the undoped composition, hindering understanding of the phase transitions in this material or unraveling the controversial origins of a low‐field ferroelectric phase observed in lead zirconate thin films. Leveraging highly oriented PbZrO3thin films, a room‐temperature ferrielectric phase is observed in the absence of external electric fields, with modulations of amplitude and direction of the spontaneous polarization and large anisotropy for critical electric fields required for phase transition. The ferrielectric state observations are qualitatively consistent with theoretical predictions, and correlate with very high dielectric tunability, and ultrahigh strains (up to 1.1%). This work suggests a need for re‐evaluation of the fundamental science of antiferroelectricity in this archetypal material. 
    more » « less