skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Demographics of Hierarchical Black Hole Mergers in Dense Star Clusters
Abstract With about one hundred mergers of binary black holes (BBHs) detected via gravitational waves by the LIGO-Virgo-KAGRA (LVK) Collaboration, our understanding of the darkest objects in the universe has taken unparalleled steps forward. While most of the events are expected to consist of black holes (BHs) directly formed from the collapse of massive stars, some may contain the remnants of previous BBH mergers. In the most massive globular clusters and in nuclear star clusters, successive mergers can produce second- (2G) or higher-generation BHs, and even form intermediate-mass BHs (IMBHs). Overall, we predict that up to ∼10%, ∼1%, or ∼0.1% of the BBH mergers have one component being a 2G, 3G, or 4G BH, respectively. Assuming that ∼500 BBH mergers will be detected in O4 by LVK, this means that ∼50, ∼5, or ∼0.5 events, respectively, will involve a 2G, 3G, or 4G BH, if most sources are produced dynamically in dense star clusters. With their distinctive signatures of higher masses and spins, such hierarchical mergers offer an unprecedented opportunity to learn about the BH populations in the densest stellar systems and to shed light on the elusive IMBHs that may form therein.  more » « less
Award ID(s):
2108624
PAR ID:
10464003
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
951
Issue:
2
ISSN:
0004-637X
Page Range / eLocation ID:
129
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Current theoretical models predict a mass gap with a dearth of stellar black holes (BHs) between roughly 50 M ⊙ and 100 M ⊙ , while above the range accessible through massive star evolution, intermediate-mass BHs (IMBHs) still remain elusive. Repeated mergers of binary BHs, detectable via gravitational-wave emission with the current LIGO/Virgo/Kagra interferometers and future detectors such as LISA or the Einstein Telescope, can form both mass-gap BHs and IMBHs. Here we explore the possibility that mass-gap BHs and IMBHs are born as a result of successive BH mergers in dense star clusters. In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the BH merger products after they receive significant recoil kicks due to anisotropic emission of gravitational radiation. Using for the first time simulations that include full stellar evolution, we show that a massive stellar BH seed can easily grow to ∼10 3 –10 4 M ⊙ as a result of repeated mergers with other smaller BHs. We find that lowering the cluster metallicity leads to larger final BH masses. We also show that the growing BH spin tends to decrease in magnitude with the number of mergers so that a negative correlation exists between the final mass and spin of the resulting IMBHs. Assumptions about the birth spins of stellar BHs affect our results significantly, with low birth spins leading to the production of a larger population of massive BHs. 
    more » « less
  2. Abstract Intermediate-mass black holes (IMBHs) are believed to be the missing link between the supermassive black holes (BHs) found at the centers of massive galaxies and BHs formed through stellar core collapse. One of the proposed mechanisms for their formation is a collisional runaway process in high-density young star clusters, where an unusually massive object forms through repeated stellar collisions and mergers, eventually collapsing to form an IMBH. This seed IMBH could then grow further through binary mergers with other stellar-mass BHs. Here we investigate the gravitational-wave (GW) signals produced during these later IMBH–BH mergers. We use a state-of-the-art semi-analytic approach to study the stellar dynamics and to characterize the rates and properties of IMBH–BH mergers. We also study the prospects for detection of these mergers by current and future GW observatories, both space-based (LISA) and ground-based (LIGO Voyager, Einstein Telescope, and Cosmic Explorer). We find that most of the merger signals could be detected, with some of them being multiband sources. Therefore, GWs represent a unique tool to test the collisional runaway scenario and to constrain the population of dynamically assembled IMBHs. 
    more » « less
  3. Abstract The existence of black holes (BHs) with masses in the range between stellar remnants and supermassive BHs has only recently become unambiguously established. GW190521, a gravitational wave signal detected by the LIGO/Virgo Collaboration, provides the first direct evidence for the existence of such intermediate-mass BHs (IMBHs). This event sparked and continues to fuel discussion on the possible formation channels for such massive BHs. As the detection revealed, IMBHs can form via binary mergers of BHs in the “upper mass gap” (≈40–120M). Alternatively, IMBHs may form via the collapse of a very massive star formed through stellar collisions and mergers in dense star clusters. In this study, we explore the formation of IMBHs with masses between 120 and 500Min young, massive star clusters using state-of-the-art Cluster Monte Carlo models. We examine the evolution of IMBHs throughout their dynamical lifetimes, ending with their ejection from the parent cluster due to gravitational radiation recoil from BH mergers, or dynamical recoil kicks from few-body scattering encounters. We find thatallof the IMBHs in our models are ejected from the host cluster within the first ∼500 Myr, indicating a low retention probability of IMBHs in this mass range for globular clusters today. We estimate the peak IMBH merger rate to be 2 Gpc 3 yr 1 at redshiftz≈ 2. 
    more » « less
  4. Abstract Repeated mergers of stellar-mass black holes in dense star clusters can produce intermediate-mass black holes (IMBHs). In particular, nuclear star clusters at the centers of galaxies have deep enough potential wells to retain most of the black hole (BH) merger products, in spite of the significant recoil kicks due to anisotropic emission of gravitational radiation. These events can be detected in gravitational waves, which represent an unprecedented opportunity to reveal IMBHs. In this paper, we analyze the statistical results of a wide range of numerical simulations, which encompass different cluster metallicities, initial BH seed masses, and initial BH spins, and we compute the merger rate of IMBH binaries. We find that merger rates are in the range 0.01–10 Gpc −3 yr −1 depending on IMBH masses. We also compute the number of multiband detections in ground-based and space-based observatories. Our model predicts that a few merger events per year should be detectable with LISA, DECIGO, Einstein Telescope (ET), and LIGO for IMBHs with masses ≲1000 M ⊙ , and a few tens of merger events per year with DECIGO, ET, and LIGO only. 
    more » « less
  5. ABSTRACT We present a novel, few-body computational framework designed to shed light on the likelihood of forming intermediate-mass (IM) and supermassive (SM) black holes (BHs) in nuclear star clusters (NSCs) through successive BH mergers, initiated with a single BH seed. Using observationally motivated NSC profiles, we find that the probability of an $${\sim }100\hbox{-}\mathrm{M}_\odot$$ BH to grow beyond $${\sim }1000 \, \mathrm{M}_\odot$$ through successive mergers ranges from $${\sim }0.1~{{\ \rm per\ cent}}$$ in low-density, low-mass clusters to nearly 90  per cent in high-mass, high-density clusters. However, in the most massive NSCs, the growth time-scale can be very long ($$\gtrsim 1\,$$ Gyr); vice versa, while growth is least likely in less massive NSCs, it is faster there, requiring as little as $${\sim }0.1\,$$Gyr. The increased gravitational focusing in systems with lower velocity dispersions is the primary contributor to this behaviour. We find that there is a simple ‘7-strikes-and-you’re-in’ rule governing the growth of BHs: Our results suggest that if the seed survives 7–10 successive mergers without being ejected (primarily through gravitational wave recoil kicks), the growing BH will most likely remain in the cluster and will then undergo runaway, continuous growth all the way to the formation of an SMBH (under the simplifying assumption adopted here of a fixed background NSC). Furthermore, we find that rapid mergers enforce a dynamically mediated ‘mass gap’ between about $${50\!-\!300 \, \mathrm{M}_\odot }$$ in an NSC. 
    more » « less