skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multidimensional attributes expose Heider balance dynamics to measurements
Abstract Most of studied social interactions arise from dyadic relations. An exception is Heider Balance Theory that postulates the existence of triad dynamics, which however has been elusive to observe. Here, we discover a sufficient condition for the Heider dynamics observability: assigning the edge signs according to multiple opinions of connected agents. Using longitudinal records of university student mutual contacts and opinions, we create a coevolving network on which we introduce models of student interactions. These models account for: multiple topics of individual student opinions, influence of such opinions on dyadic relations, and influence of triadic relations on opinions. We show that the triadic influence is empirically measurable for static and dynamic observables when signs of edges are defined by multidimensional differences between opinions on all topics. Yet, when these signs are defined by a difference between opinions on each topic separately, the triadic interactions’ influence is indistinguishable from noise.  more » « less
Award ID(s):
2214216
PAR ID:
10464037
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The significance and influence of U.S. Supreme Court majority opinions derive in large part from opinions’ roles as precedents for future opinions. A growing body of literature seeks to understand what drives the use of opinions as precedents through the study of Supreme Court case citation patterns. We raise two limitations of existing work on Supreme Court citations. First, dyadic citations are typically aggregated to the case level before they are analyzed. Second, citations are treated as if they arise independently. We present a methodology for studying citations between Supreme Court opinions at the dyadic level, as a network, that overcomes these limitations. This methodology—the citation exponential random graph model, for which we provide user-friendly software—enables researchers to account for the effects of case characteristics and complex forms of network dependence in citation formation. We then analyze a network that includes all Supreme Court cases decided between 1950 and 2015. We find evidence for dependence processes, including reciprocity, transitivity, and popularity. The dependence effects are as substantively and statistically significant as the effects of exogenous covariates, indicating that models of Supreme Court citations should incorporate both the effects of case characteristics and the structure of past citations. 
    more » « less
  2. Abstract Percolation establishes the connectivity of complex networks and is one of the most fundamental critical phenomena for the study of complex systems. On simple networks, percolation displays a second-order phase transition; on multiplex networks, the percolation transition can become discontinuous. However, little is known about percolation in networks with higher-order interactions. Here, we show that percolation can be turned into a fully fledged dynamical process when higher-order interactions are taken into account. By introducing signed triadic interactions, in which a node can regulate the interactions between two other nodes, we define triadic percolation. We uncover that in this paradigmatic model the connectivity of the network changes in time and that the order parameter undergoes a period doubling and a route to chaos. We provide a general theory for triadic percolation which accurately predicts the full phase diagram on random graphs as confirmed by extensive numerical simulations. We find that triadic percolation on real network topologies reveals a similar phenomenology. These results radically change our understanding of percolation and may be used to study complex systems in which the functional connectivity is changing in time dynamically and in a non-trivial way, such as in neural and climate networks. 
    more » « less
  3. Abstract Individuals who interact with each other in social networks often exchange ideas and influence each other’s opinions. A popular approach to study the spread of opinions on networks is by examining bounded-confidence models (BCMs), in which the nodes of a network have continuous-valued states that encode their opinions and are receptive to other nodes’ opinions when they lie within some confidence bound of their own opinion. In this article, we extend the Deffuant–Weisbuch (DW) model, which is a well-known BCM, by examining the spread of opinions that coevolve with network structure. We propose an adaptive variant of the DW model in which the nodes of a network can (1) alter their opinions when they interact with neighbouring nodes and (2) break connections with neighbours based on an opinion tolerance threshold and then form new connections following the principle of homophily. This opinion tolerance threshold determines whether or not the opinions of adjacent nodes are sufficiently different to be viewed as ‘discordant’. Using numerical simulations, we find that our adaptive DW model requires a larger confidence bound than a baseline DW model for the nodes of a network to achieve a consensus opinion. In one region of parameter space, we observe ‘pseudo-consensus’ steady states, in which there exist multiple subclusters of an opinion cluster with opinions that differ from each other by a small amount. In our simulations, we also examine the roles of early-time dynamics and nodes with initially moderate opinions for achieving consensus. Additionally, we explore the effects of coevolution on the convergence time of our BCM. 
    more » « less
  4. Socio-ecological models combine ecological systems with human social dynamics in order to better understand human interactions with the environment. To model human behavior, replicator dynamics can be used to model how societal influence and financial costs can change opinions about resource extraction. Previous research on replicator dynamics has shown how evolving opinions on conservation can change how humans interact with their environment and therefore change population dynamics of the harvested species. However, social-ecological models often assume that human societies are homogeneous with no social structure. Building on previous work on social-ecological models, we develop a two-patch socio-ecological model with social hierarchy in order to study the interactions between spatial dynamics and social inequity. We found that fish movement between patches is a major driver of model dynamics, especially when the two patches exhibit different social equality and fishing practices. Further, we found that the societal influence between groups of harvesters was essential to ensuring stable fishery dynamics. Next, we developed a case study of two independently managed fisheries that were connected by fish movement where one human group fishes sustainably while another was over-harvests, resulting in a fishery collapse of both patches. We also found that because in this model, the influence of one human patch on another only communicates the amount of each catch and no fishing strategies were employed, increased social influence decreased the sustainability of the fishery. The findings of this study indicate the importance of including spatial components to socio- ecological models and highlights the importance of understanding species’ movements when making conservation decisions. Further, we demonstrate how incorporating fishing methods from outside sources can result in higher stability of the harvested population, demonstrating the need for effective communication across management regimes. 
    more » « less
  5. Abstract Cascades over networks (e.g., neuronal avalanches, social contagions, and system failures) often involve higher-order dependencies, yet theory development has largely focused on pairwise-interaction models. Here, we develop a ‘simplicial threshold model’ (STM) for cascades over simplicial complexes that encode dyadic, triadic and higher-order interactions. Focusing on small-world models containing both short- and long-range k -simplices, we explore spatio-temporal patterns that manifest as a frustration between local and nonlocal propagations. We show that higher-order interactions and nonlinear thresholding coordinate to robustly guide cascades along a k -dimensional generalization of paths that we call ‘geometrical channels’. We also find this coordination to enhance the diversity and efficiency of cascades over a simplicial-complex model for a neuronal network, or ‘neuronal complex’. We support these findings with bifurcation theory and data-driven approaches based on latent geometry. Our findings provide fruitful directions for uncovering the multiscale, multidimensional mechanisms that orchestrate the spatio-temporal patterns of nonlinear cascades. 
    more » « less