We propose theadaptive hybrid particle-grid flow mapmethod, a novel flow-map approach that leverages Lagrangian particles to simultaneously transport impulse and guide grid adaptation, introducing a fully adaptive flow map-based fluid simulation framework. The core idea of our method is to maintain flow-map trajectories separately on grid nodes and particles: the grid-based representation tracks long-range flow maps at a coarse spatial resolution, while the particle-based representation tracks both long and short-range flow maps, enhanced by their gradients, at a fine resolution. This hybrid Eulerian-Lagrangian flow-map representation naturally enables adaptivity for both advection and projection steps. We implement this method inCirrus, a GPU-based fluid simulation framework designed for octree-like adaptive grids enhanced with particle trackers. The efficacy of our system is demonstrated through numerical tests and various simulation examples, achieving up to 512 × 512 × 2048 effective resolution on an RTX 4090 GPU. We achieve a 1.5 to 2× speedup with our GPU optimization over the Particle Flow Map method on the same hardware, while the adaptive grid implementation offers efficiency gains of one to two orders of magnitude by reducing computational resource requirements. The source code has been made publicly available at: https://wang-mengdi.github.io/proj/25-cirrus/.
more »
« less
Sag-Free Initialization for Strand-Based Hybrid Hair Simulation
Lagrangian/Eulerian hybrid strand-based hair simulation techniques have quickly become a popular approach in VFX and real-time graphics applications. With Lagrangian hair dynamics, the inter-hair contacts are resolved in the Eulerian grid using the continuum method, i.e., the MPM scheme with the granular Drucker-Prager rheology, to avoid expensive collision detection and handling. This fuzzy collision handling makes the authoring process significantly easier. However, although current hair grooming tools provide a wide range of strand-based modeling tools for this simulation approach, the crucial sag-free initialization functionality remains often ignored. Thus, when the simulation starts, gravity would cause any artistic hairstyle to sag and deform into unintended and undesirable shapes. This paper proposes a novel four-stage sag-free initialization framework to solve stable quasistatic configurations for hybrid strand-based hair dynamic systems. These four stages are split into two global-local pairs. The first one ensures static equilibrium at every Eulerian grid node with additional inequality constraints to prevent stress from exiting the yielding surface. We then derive several associated closed-form solutions in the local stage to compute segment rest lengths, orientations, and particle deformation gradients in parallel. The second global-local step solves along each hair strand to ensure all the bend and twist constraints produce zero net torque on every hair segment, followed by a local step to adjust the rest Darboux vectors to a unit quaternion. We also introduce an essential modification for the Darboux vector to eliminate the ambiguity of the Cosserat rod rest pose in both initialization and simulation. We evaluate our method on a wide range of hairstyles, and our approach can only take a few seconds to minutes to get the rest quasistatic configurations for hundreds of hair strands. Our results show that our method successfully prevents sagging and has minimal impact on the hair motion during simulation.
more »
« less
- Award ID(s):
- 1956085
- PAR ID:
- 10464135
- Date Published:
- Journal Name:
- ACM Transactions on Graphics
- Volume:
- 42
- Issue:
- 4
- ISSN:
- 0730-0301
- Page Range / eLocation ID:
- 1 to 14
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This paper introduces a new weighting scheme for particle-grid transfers that generates hybrid Lagrangian/Eulerian fluid simulations with uniform particle distributions and precise volume control. At its core, our approach reformulates the construction of Power Particles [de Goes et al. 2015] by computing volume-constrained density kernels. We employ these optimized kernels as particle domains within the Generalized Interpolation Material Point method (GIMP) in order to incorporate Power Particles into the Particle-In-Cell framework, hence the name the Power Particle-In-Cell method. We address the construction of volume-constrained density kernels as a regularized optimal transportation problem and describe an iterative solver based on localized Gaussian convolutions that leads to a significant performance speedup compared to [de Goes et al. 2015]. We also present novel extensions for handling free surfaces and solid obstacles that bypass the need for cell clipping and ghost particles. We demonstrate the advantages of our transfer weights by improving hybrid schemes for fluid simulation such as the Fluid Implicit Particle (FLIP) method and the Affine Particle-In-Cell (APIC) method with volume preservation and robustness to varying particle-per-cell ratio, while retaining low numerical dissipation, conserving linear and angular momenta, and avoiding particle reseeding or post-process relaxations.more » « less
-
We propose Coadjoint Orbit FLIP (CO-FLIP), a high order accurate, structure preserving fluid simulation method in the hybrid Eulerian-Lagrangian framework. We start with a Hamiltonian formulation of the incompressible Euler Equations, and then, using a local, explicit, and high order divergence free interpolation, construct a modified Hamiltonian system that governs our discrete Euler flow. The resulting discretization, when paired with a geometric time integration scheme, is energy and circulation preserving (formally the flow evolves on a coadjoint orbit) and is similar to the Fluid Implicit Particle (FLIP) method. CO-FLIP enjoys multiple additional properties including that the pressure projection is exact in the weak sense, and the particle-to-grid transfer is an exact inverse of the grid-to-particle interpolation. The method is demonstrated numerically with outstanding stability, energy, and Casimir preservation. We show that the method produces benchmarks and turbulent visual effects even at low grid resolutions.more » « less
-
We propose a novel Particle Flow Map (PFM) method to enable accurate long-range advection for incompressible fluid simulation. The foundation of our method is the observation that a particle trajectory generated in a forward simulation naturally embodies a perfect flow map. Centered on this concept, we have developed an Eulerian-Lagrangian framework comprising four essential components: Lagrangian particles for a natural and precise representation of bidirectional flow maps; a dual-scale map representation to accommodate the mapping of various flow quantities; a particle-to-grid interpolation scheme for accurate quantity transfer from particles to grid nodes; and a hybrid impulse-based solver to enforce incompressibility on the grid. The efficacy of PFM has been demonstrated through various simulation scenarios, highlighting the evolution of complex vortical structures and the details of turbulent flows. Notably, compared to NFM, PFM reduces computing time by up to 49 times and memory consumption by up to 41%, while enhancing vorticity preservation as evidenced in various tests like leapfrog, vortex tube, and turbulent flow.more » « less
-
Abstract In this paper, a hybrid Lagrangian–Eulerian topology optimization (LETO) method is proposed to solve the elastic force equilibrium with the Material Point Method (MPM). LETO transfers density information from freely movable Lagrangian carrier particles to a fixed set of Eulerian quadrature points. This transfer is based on a smooth radial kernel involved in the compliance objective to avoid the artificial checkerboard pattern. The quadrature points act as MPM particles embedded in a lower‐resolution grid and enable a subcell multidensity resolution of intricate structures with a reduced computational cost. A quadrature‐level connectivity graph‐based method is adopted to avoid the artificial checkerboard issues commonly existing in multiresolution topology optimization methods. Numerical experiments are provided to demonstrate the efficacy of the proposed approach.more » « less
An official website of the United States government

