skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 1, 2026

Title: Cirrus: Adaptive Hybrid Particle-Grid Flow Maps on GPU
We propose theadaptive hybrid particle-grid flow mapmethod, a novel flow-map approach that leverages Lagrangian particles to simultaneously transport impulse and guide grid adaptation, introducing a fully adaptive flow map-based fluid simulation framework. The core idea of our method is to maintain flow-map trajectories separately on grid nodes and particles: the grid-based representation tracks long-range flow maps at a coarse spatial resolution, while the particle-based representation tracks both long and short-range flow maps, enhanced by their gradients, at a fine resolution. This hybrid Eulerian-Lagrangian flow-map representation naturally enables adaptivity for both advection and projection steps. We implement this method inCirrus, a GPU-based fluid simulation framework designed for octree-like adaptive grids enhanced with particle trackers. The efficacy of our system is demonstrated through numerical tests and various simulation examples, achieving up to 512 × 512 × 2048 effective resolution on an RTX 4090 GPU. We achieve a 1.5 to 2× speedup with our GPU optimization over the Particle Flow Map method on the same hardware, while the adaptive grid implementation offers efficiency gains of one to two orders of magnitude by reducing computational resource requirements. The source code has been made publicly available at: https://wang-mengdi.github.io/proj/25-cirrus/.  more » « less
Award ID(s):
2433307 1919647
PAR ID:
10635822
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
44
Issue:
4
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 17
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel Particle Flow Map (PFM) method to enable accurate long-range advection for incompressible fluid simulation. The foundation of our method is the observation that a particle trajectory generated in a forward simulation naturally embodies a perfect flow map. Centered on this concept, we have developed an Eulerian-Lagrangian framework comprising four essential components: Lagrangian particles for a natural and precise representation of bidirectional flow maps; a dual-scale map representation to accommodate the mapping of various flow quantities; a particle-to-grid interpolation scheme for accurate quantity transfer from particles to grid nodes; and a hybrid impulse-based solver to enforce incompressibility on the grid. The efficacy of PFM has been demonstrated through various simulation scenarios, highlighting the evolution of complex vortical structures and the details of turbulent flows. Notably, compared to NFM, PFM reduces computing time by up to 49 times and memory consumption by up to 41%, while enhancing vorticity preservation as evidenced in various tests like leapfrog, vortex tube, and turbulent flow. 
    more » « less
  2. We propose theVortexParticleFlowMap (VPFM) method to simulate incompressible flow with complex vortical evolution in the presence of dynamic solid boundaries. The core insight of our approach is that vorticity is an ideal quantity for evolution on particle flow maps, enabling significantly longer flow map distances compared to other fluid quantities like velocity or impulse. To achieve this goal, we developed a hybrid Eulerian-Lagrangian representation that evolves vorticity and flow map quantities on vortex particles, while reconstructing velocity on a background grid. The method integrates three key components: (1) a vorticity-based particle flow map framework, (2) an accurate Hessian evolution scheme on particles, and (3) a solid boundary treatment for no-through and no-slip conditions in VPFM. These components collectively allow a substantially longer flow map length (3–12times longer) than the state-of-the-art, enhancing vorticity preservation over extended spatiotemporal domains. We validated the performance of VPFM through diverse simulations, demonstrating its effectiveness in capturing complex vortex dynamics and turbulence phenomena. 
    more » « less
  3. We propose a novel solid-fluid interaction method for coupling elastic solids with impulse flow maps. Our key idea is to unify the representation of fluid and solid components as particle flow maps with different lengths and dynamics. The solid-fluid coupling is enabled by implementing two novel mechanisms: first, we developed an impulse-to-velocity transfer mechanism to unify the exchanged physical quantities; second, we devised a particle path integral mechanism to accumulate coupling forces along each flow-map trajectory. Our framework integrates these two mechanisms into an Eulerian-Lagrangian impulse fluid simulator to accommodate traditional coupling models, exemplified by the Material Point Method (MPM) and Immersed Boundary Method (IBM), within a particle flow map framework. We demonstrate our method's efficacy by simulating solid-fluid interactions exhibiting strong vortical dynamics, including various vortex shedding and interaction examples across swimming, falling, breezing, and combustion. 
    more » « less
  4. We introduce Neural Flow Maps, a novel simulation method bridging the emerging paradigm of implicit neural representations with fluid simulation based on the theory of flow maps, to achieve state-of-the-art simulation of in-viscid fluid phenomena. We devise a novel hybrid neural field representation, Spatially Sparse Neural Fields (SSNF), which fuses small neural networks with a pyramid of overlapping, multi-resolution, and spatially sparse grids, to compactly represent long-term spatiotemporal velocity fields at high accuracy. With this neural velocity buffer in hand, we compute long-term, bidirectional flow maps and their Jacobians in a mechanistically symmetric manner, to facilitate drastic accuracy improvement over existing solutions. These long-range, bidirectional flow maps enable high advection accuracy with low dissipation, which in turn facilitates high-fidelity incompressible flow simulations that manifest intricate vortical structures. We demonstrate the efficacy of our neural fluid simulation in a variety of challenging simulation scenarios, including leapfrogging vortices, colliding vortices, vortex reconnections, as well as vortex generation from moving obstacles and density differences. Our examples show increased performance over existing methods in terms of energy conservation, visual complexity, adherence to experimental observations, and preservation of detailed vortical structures. 
    more » « less
  5. This paper introduces a new weighting scheme for particle-grid transfers that generates hybrid Lagrangian/Eulerian fluid simulations with uniform particle distributions and precise volume control. At its core, our approach reformulates the construction of Power Particles [de Goes et al. 2015] by computing volume-constrained density kernels. We employ these optimized kernels as particle domains within the Generalized Interpolation Material Point method (GIMP) in order to incorporate Power Particles into the Particle-In-Cell framework, hence the name the Power Particle-In-Cell method. We address the construction of volume-constrained density kernels as a regularized optimal transportation problem and describe an iterative solver based on localized Gaussian convolutions that leads to a significant performance speedup compared to [de Goes et al. 2015]. We also present novel extensions for handling free surfaces and solid obstacles that bypass the need for cell clipping and ghost particles. We demonstrate the advantages of our transfer weights by improving hybrid schemes for fluid simulation such as the Fluid Implicit Particle (FLIP) method and the Affine Particle-In-Cell (APIC) method with volume preservation and robustness to varying particle-per-cell ratio, while retaining low numerical dissipation, conserving linear and angular momenta, and avoiding particle reseeding or post-process relaxations. 
    more » « less