skip to main content


Title: Dry-to-Wet Soil Gradients Enhance Convection and Rainfall over Subtropical South America
Abstract

Soil moisture–precipitation (SM–PPT) feedbacks at the mesoscale represent a major challenge for numerical weather prediction, especially for subtropical regions that exhibit large variability in surface SM. How does surface heterogeneity, specifically mesoscale gradients in SM and land surface temperature (LST), affect convective initiation (CI) over South America? Using satellite data, we track nascent, daytime convective clouds and quantify the underlying antecedent (morning) surface heterogeneity. We find that convection initiates preferentially on the dry side of strong SM/LST boundaries with spatial scales of tens of kilometers. The strongest alongwind gradients in LST anomalies at 30-km length scale underlying the CI location occur during weak background low-level wind (<2.5 m s−1), high convective available potential energy (>1500 J kg−1), and low convective inhibition (<250 J kg−1) over sparse vegetation. At 100-km scale, strong gradients occur at the CI location during convectively unfavorable conditions and strong background flow. The location of PPT is strongly sensitive to the strength of the background flow. The wind profile during weak background flow inhibits propagation of convection away from the dry regions leading to negative SM–PPT feedback whereas strong background flow is related to longer life cycle and rainfall hundreds of kilometers away from the CI location. Thus, the sign of the SM–PPT feedback is dependent on the background flow. This work presents the first observational evidence that CI over subtropical South America is associated with dry soil patches on the order of tens of kilometers. Convection-permitting numerical weather prediction models need to be examined for accurately capturing the effect of SM heterogeneity in initiating convection over such semiarid regions.

 
more » « less
PAR ID:
10464237
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
American Meteorological Society
Date Published:
Journal Name:
Journal of Hydrometeorology
Volume:
24
Issue:
9
ISSN:
1525-755X
Page Range / eLocation ID:
p. 1563-1581
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Data from scanning radars, radiosondes, and vertical profilers deployed during three field campaigns are analyzed to study interactions between cloud-scale updrafts associated with initiating deep moist convection and the surrounding environment. Three cases are analyzed in which the radar networks permitted dual-Doppler wind retrievals in clear air preceding and during the onset of surface precipitation. These observations capture the evolution of: i) the mesoscale and boundary layer flow, and ii) low-level updrafts associated with deep moist convection initiation (CI) events yielding sustained or short-lived precipitating storms. The elimination of convective inhibition did not distinguish between sustained and unsustained CI events, though the vertical distribution of convective available potential energy may have played a role. The clearest signal differentiating the initiation of sustained versus unsustained precipitating deep convection was the depth of the low-level horizontal wind convergence associated with the mesoscale flow feature triggering CI, a sharp surface wind shift boundary or orographic upslope flow. The depth of the boundary layer relative to the height of the LFC failed to be a consistent indicator of CI potential. Widths of the earliest detectable low-level updrafts associated with sustained precipitating deep convection were ~3-5 km, larger than updrafts associated with surrounding boundary layer turbulence (~1-3-km wide). It is hypothesized that updrafts of this larger size are important for initiating cells to survive the destructive effects of buoyancy dilution via entrainment. 
    more » « less
  2. This study analyzes an ensemble of numerical simulations of a heavy rainfall event east of Taiwan on 9 June 2020. Heavy rainfall was produced by quasi-stationary back-building mesoscale convective systems (MCS) associated with a mei-yu front. Global model forecast skill was poor in location and intensity of rainfall. The mesoscale ensemble showed liminal conditions between heavy rainfall or little to no rainfall. The two most accurate and two least accurate ensemble members are selected for analysis via validation against radar-estimated rainfall observations. All members feature moist soundings with low levels of free convection (LFC) and sufficient instability for deep convection. We find that stronger gradients in 100-m θe and θv in the most accurate members associated with a near-surface frontal boundary focus the lifting mechanism for deep, moist convection and enhanced rainfall. As the simulations progress, stronger southerly winds in the least accurate members advect drier mid-level air into the region of interest and shift the near-surface boundary further north and west. Analysis of the verification ensemble mean analysis reveals a strong near-surface frontal boundary similarly positioned as in the most accurate members and dry air aloft more similar to that in the least accurate members, suggesting that the positioning of the frontal boundary is more critical to accurately reproducing rainfall patterns and intensity in this case. The analyses suggest that subtle details in the simulation of frontal boundaries and mesoscale flow structures can lead to bifurcations in producing extreme or almost no rainfall. Implications for improved probabilistic forecasts of heavy rainfall events will be discussed. 
    more » « less
  3. Abstract

    This study investigates the diurnal cycle of rainfall, convection, and precipitation features (PFs) over the Maritime Continent (MC). The study uses Tropical Rainfall Measuring Missions (TRMM) Multi‐satellite Precipitation Analysis (TMPA; product 3b42), TRMM PFs, and convective classifications from the International Satellite Cloud Climatology Project (ISCCP) data. Together, these satellites dataset paint a comprehensive picture of the diurnal cycle of rainfall and convection over the MC consistent with past research. Isolated convection initiates around midday over the higher terrain of the large islands (Java, Borneo, and Papua New Guinea). The convection becomes more organized through the afternoon and evening, leading to peak rainfall over the islands around 1800–2100 local standard time (LST). Over the next few hours, some of that rainfall transitions to stratiform rain over land. The convection then propagates offshore overnight with rainfall peaking along the coast around 0300–0600 LST and then over ocean around 0600–0900 LST. ISCCP data suggests that the overnight and early morning convection is more associated with isolated convective cells than the remnants of mesoscale convective systems. The coastal and oceanic diurnal ranges also seem to be larger in stratiform rainfall, in contrast to land where convective rainfall dominates. Seasonally the diurnal variation of rainfall, convection, and PFs over the region have greater amplitude during DJF (December, January, and February) than JJA (June, July, and August). Given the MC's critical role in the global climate, examining variations in these cycles with respect to the Madden–Julian Oscillation and equatorial waves may ultimately lead to improved subseasonal weather forecasts.

     
    more » « less
  4. Abstract

    Numerical weather prediction models often fail to correctly forecast convection initiation (CI) at night. To improve our understanding of such events, researchers collected a unique dataset of thermodynamic and kinematic remote sensing profilers as part of the Plains Elevated Convection at Night (PECAN) experiment. This study evaluates the impacts made to a nocturnal CI forecast on 26 June 2015 by assimilating a network of atmospheric emitted radiance interferometers (AERIs), Doppler lidars, radio wind profilers, high-frequency rawinsondes, and mobile surface observations using an advanced, ensemble-based data assimilation system. Relative to operational forecasts, assimilating the PECAN dataset improves the timing, location, and orientation of the CI event. Specifically, radio wind profilers and rawinsondes are shown to be the most impactful instrument by enhancing the moisture advection into the region of CI in the forecast. Assimilating thermodynamic profiles collected by the AERIs increases midlevel moisture and improves the ensemble probability of CI in the forecast. The impacts of assimilating the radio wind profilers, AERI retrievals, and rawinsondes remain large throughout forecasting the growth of the CI event into a mesoscale convective system. Assimilating Doppler lidar and surface data only slightly improves the CI forecast by enhancing the convergence along an outflow boundary that partially forces the nocturnal CI event. Our findings suggest that a mesoscale network of profiling and surface instruments has the potential to greatly improve short-term forecasts of nocturnal convection.

     
    more » « less
  5. Abstract

    Heterogeneous landscapes can influence the development of convection through the generation of thermally driven mesoscale circulations. To assess the impacts of these circulations and their interaction with sea breezes, we simulated convection in an idealized coastal environment using the Regional Atmospheric Modeling System (RAMS). We compared simulations with striped patterns of surface vegetation to those of uniform vegetation to identify the importance of vegetation heterogeneity in impacting convective development. Under dry soil conditions representative of those during the Tracking Aerosol Convection Interactions Experiment (TRACER) and Experiment of Sea Breeze Convection, Aerosols, Precipitation, and Environment (ESCAPE) campaigns in June 2022, we found that these vegetation-induced circulations, referred to in the literature as “forest breezes,” are more important than the sea breeze in determining the location of convection initiation. Convection and precipitation are also found to be favored over forests and suppressed over pasture and suburban landscapes as a result of greater surface sensible heat flux over the forest. Our findings also indicate that forest breezes are important for initiating convection along the boundaries of the forest, but that cold pools may play a key role in propagating the forest breezes toward the center of the forest stripe. In our simulations, the collisions of these breezes in the center of the forest stripe lead to uplift and strong convection there; however, a different width of the forest stripe would alter when the forest breezes collide or whether they collide at all. The presence of these cold pools may therefore impact the “ideal stripe width,” the width of each vegetation stripe which maximizes domain-wide precipitation.

     
    more » « less